ARUP

Carmarthenshire County Council

Machynys Hotel

Geotechnical and geoenvironmental desk study Reference: 278688-MMH-ARP-RP-001

P01 | 4 October 2024

© Hammond Architect

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number

Ove Arup & Partners Limited 4 Pierhead Street Capital Waterside Cardiff CF10 4QP United Kingdom arup.com

Contents

1.	Introduction	1
1.1	Appointment	1
1.2	Objectives and scope of report	1
1.3	Use of report and limitations	1
2.	The site	2
2.1	Proposed development	2
2.2	Current conditions	2
2.3	Site history	2
3.	Environmental setting	4
3.1	Geology	4
3.2	Hydrology and hydrogeology	4
3.3	Flood risk	5
3.4	Mining	5
3.5	Unexploded Ordnance (UXO)	5
3.6	Radon gas	6
4.	Previous ground investigations (GI)	7
4.1	GI undertaken	7
4.2	Ground conditions	7
5.	Contamination potential	9
5.1	Conceptual Site Model (CSM)	9
5.2	Preliminary Risk Assessment (PRA)	11
6.	Preliminary considerations and constraints for site development	20
6.1	Geotechnical considerations	20
6.2	Geoenvironmental considerations	21
7.	Conclusions	24
8.	Recommendations for further work and ground investigation	25
9.	References	27

Tables

Table 1: Summary of previous ground investigations	7
Table 2: Summary of ground conditions	8
Table 3: Potential sources of contamination	9
Table 4: Preliminary Risk Assessment	16

Appendices

Appendix A	A-29
Previous ground investigation	A-29

1. Introduction

1.1 Appointment

Ove Arup & Partners Ltd (Arup) have been appointed by Carmarthenshire County Council (CCC) to provide multidisciplinary consultancy services to support the proposed development of Machynys Hotel. As part of these services Arup have prepared the following Geotechnical and geoenvironmental desk study and preliminary risk assessment to support the planning submission.

1.2 Objectives and scope of report

This desk study report has been prepared to support the planning application for a proposed hotel site in Machynys, providing a summary of available information on the history, environmental setting and previous ground investigations for the site and presents geotechnical and geoenvironmental constraints and considerations in relation to the proposed development. The site of the proposed hotel is located on a relatively flat area, situated approximately 2.1 miles to the south of Llanelli and the B4304 Coastal Link Road.

In 2016 Arup prepared a Geotechnical and Geoenvironmental Desk Study for the Llanelli Wellness and Life Science Village (LWLV) [1] for CCC, in support of the pre-application consultation submission for the Llanelli Wellness and Life Science Village. The Machynys hotel site was included within this study. Due to flood risk, the previous planning application was withdrawn. The proposed site has subsequently moved west of the previous application site following extensive flood monitoring and investigation. As a result, this report has been updated to support a new planning application for the hotel development.

The proposed development comprises a hotel up to five storeys with associated car parking, access roads, landscape and infrastructure works.

The Application Boundary occupies an area within the West of the Applicant's Land Ownership boundary, as seen in Drawing 1. The site is represented by the redline boundary, and anything outside of this boundary will be referred to as off-site.

The site is subject to risks including flooding and contamination, and certain areas of the proposed hotel development, particularly towards the eastern corner as well as the adjacent B3404 lie within a 'blue' zone categorised as "extent of 0.1% AEP+CC flooding (limit development in area, avoid raising levels)", although the level of flooding will only be minor, and is not anticipated to pose a risk to the proposed development.

1.3 Use of report and limitations

This report has been prepared by Arup for use by CCC. It should not be relied upon by any third-party except as provided for in Arup's appointment with CCC. Arup has based this report on the sources detailed within it and believes them to be reliable but cannot and does not guarantee the authenticity or reliability of third-party information. Reasonable skill and care have been exercised in preparation for this report in accordance with the technical requirements of the brief. Notwithstanding the efforts made by the professional team in undertaking assessment, it is possible that ground conditions and contamination other than that potentially indicated by this report may exist at the site.

This report has been prepared based on current legislation, statutory requirements, planning policy and industry good practice at the time of writing. Any subsequent changes or new guidance may require the findings, conclusions and recommendations made in this report to be reassessed in the light of the circumstances. Should additional relevant information become available the findings of this report should be reviewed.

2. The site

2.1 Proposed development

A concept masterplan is demonstrated in Drawing 2, which shows the proposed hotel development located towards the north of the site. Design development work is ongoing, and therefore Drawing 2 is intended to illustrate the intended location of the proposed hotel only. The initial design work includes:

- A five storey L 'shaped' hotel comprising 120 bedrooms.
- Associated car parking; up to 140 space car park spaces for guests and up to 40 staff (landscaped).
- Hotel vehicular access; B4304.
- Hotel garden/ terrace/ event space incorporating Sustainable Urban Drainage Systems (SuDS).
- Sensitive landscape integration with open parkland.

2.2 Current conditions

The site is bounded to the north by the B4304 Coastal Link Road, to the west by the Nicklaus Avenue access road to the Machynys Peninsular Golf & Country Club, to the south by residential properties and to the east by grassland. Commercial properties are situated across the B4304 to the north off-site (Heavy Engineering Company Ltd, LBS Builders Merchants, Delta Lakes Enterprise Centre).

The application boundary is almost rectangular in shape and approximately 370 * 400 m in size or 3.5ha in area, although the hotel is proposed to occupy a section towards the north of this application boundary, occupying almost half of the area. The topography of the northern part of the site is relatively flat, lying at approximately 8 m OD. At present, according to historical mapping, north of the boundary comprises a brownfield area with two areas of infilled land of unknown nature and composition which were former reservoirs, and the south of the site comprises a large area of grassland and scrubs with some trees, sitting at a slightly higher elevation of around 15m OD.

According to aerial images, there does not appear to be any existing structures or hardstanding occupying the site, such as made ground, historic foundations or rubble, although the presence of foundations or structures below ground cannot be discounted and should be confirmed following further intrusive investigation.

2.3 Site history

This section of the report provides a summary and interpretation of the site history and its influence on the site ground conditions, based on historical plans, maps and information. A significant portion of this information has been summarised from the desk study [1].

Date	Development	Comments
1889	Directly east of the site was the Machynys Brick Works, comprising several brick fields and a clay mill, as well as several unlabelled buildings and associated tramways. There is also a chemical works located less than 1 km towards the northeast.	Off-site
1889	There is a reservoir occupying a large corner within the far eastern boundary, which was backfilled between 1965 and 1973, which is anticipated to be associated with the nearby Burry Works (tin plate) or the Machynys Brick Works.	On site
1900-1901	Little to no change.	On and off-site

Date	Development	Comments
1907-1908	Several more buildings now occupy the site towards the centre, including a school and a chapel. A larger reservoir is now present north/ northwest of the existing reservoir, again likely associated with the Bury Works east of the sit boundary.	On site
1921	Little to no change.	On site
1921	A lot of the infrastructure associated with the Machynys Brick Works and Burry Works has now been removed, with only a few buildings and tramway lines remaining.	Off-site
1938	Little to no change.	On site
1938	Almost all the infrastructure associated with the Brick Works east of the site has now been removed, including the tramway lines.	Off-site
1939-1945	During WWII it was reported that the Llanelli National Shell Factory was present directly to the west off-site, where the Burry Extension Works were, which engaged in the manufacture of 6" shells. An adjacent factory was engaged in the rectification of 6" shells.	Off-site
1958	The Machynys Brickworks is now labelled "disused".	Off-site
1964-1965	Substantial redevelopment had occurred by this time, with several new buildings occupying almost the entirety of the site, and the reservoirs also appear to have been infilled or in the process of being infilled (infilled between 1965 and 1973).	On site
1964-1965	Off site, to the east replacing the former brick works is a succession of rectangular sheds, facilitated by rail and tram lines, which at one point would have likely been associated with the Burry Works west off-site, which was developed into an engineering works in 1973.	Off-site
1999	The engineering works remained until 1999, where there is no evidence of the former industries which once surrounded the site.	Off-site
1999	The site now appears vacant, with no visual evidence of the former historical developments and reservoirs.	On-site
2005	The housing southwest off site is shown to have been developed since 1999, and the Machynys Golf and Country Club to the south and east of the site opened in 2005. Since 2005, there appears to have been little to no changes.	Off-site

To summarise the above, it is likely that most of the site's history has provided the potential for contamination to be present. Particularly, contamination is anticipated to be present within the subsurface, specifically within the backfilled reservoirs of unknown composition, which could potentially have been infilled with industrial waste from the surrounding industries such as the brick and tin plate works. This could not only pose contamination risks, but also stability issues for construction due to the potential of settlement because of soft/ loose ground.

3. Environmental setting

3.1 Geology

The geology of the site has been interpreted from the published 1:10,560 scale BGS geological map Sheet SS 59 NW and the BGS memoir for the area (Sheet 247) [2] has also been consulted, as well as the BGS Geoindex [3].

There is a mapped contact within the superficial deposits underlying the site: Glaciofluvial Ice Contact Deposits (Devensian – Sand and Gravel) towards the west of the site and Raised Storm Beach Deposits (Sand and Gravel) towards the east. Overlying the superficial deposits is a cover of Artificial Ground covering the entirety of the proposed site (indicating Made Ground).

The solid geology comprises the Hughes Beds of the Upper Coal Measures. The geological plan indicates that the Hughes Beds are predominantly interbedded sandstones, mudstones and coal seams. The general dip of the beds is around 15° to the north.

700m east of the site is a south trending Box Fault, which intersects the Swansea Two Feet coal seam, but this is not within the site boundary therefore the risk of past mining is not anticipated to cause any risks, and can therefore be discounted (see Section 3.4)

The geology plan describes details of the Machynys Borehole sunk to the south of the site in 1888. The log states that the drift cover was found to be 127 feet (38m) thick at this point. Another borehole approximately 600m to the east of the site describes 140 feet (42m) to rock.

3.2 Hydrology and hydrogeology

3.2.1 Hydrology

The New Dafen River is located approximately 250m to the north of the site. This river is controlled by a sluice gate, which connects immediately to the River Lliedi (west) and beyond to the Loughor Estuary.

The New Dafen River was subject to the previous "River Quality Objectives" RQO scheme. The scheme classification was used for planning water quality improvements until 2006 when the scheme ended. The RQO class of the New Dafen River is 3 (there are five classes ranging in order of decreasing quality from 1-5). From 1995 to 1998 (inclusive), the river water was recorded to "significantly fail" the Class 3 criteria (which includes unionised ammonia of 0.021mg/l and copper from 300ug/l to 2000ug/l subject to hardness class). From 1999 to 2006, the samples of river water were recorded to meet the Class 3 criteria.

Loughor Estuary is located around 500m south and west of the site.

As part of the Machynys Golf and Country Club to the south-east of the site, there are various lakes and watercourses that form part of the golf course.

3.2.2 Hydrogeology

The Environment Agency aquifer maps (now Natural Resource Wales) show the Raised Storm Beach Deposits underlying the site to be designated as 'Secondary Undifferentiated' strata [3].

The Glaciofluvial Deposits are designated as a 'Secondary A' aquifer. Secondary A aquifers are defined as having permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers. The underlying Hughes Beds of the Upper Coal Measures bedrock is designated as a 'Secondary A' aquifer.

Based on available ground investigation information for the wider Llanelli area, groundwater is present within the more permeable layers in the Raised Beach Deposits (granular) subject to locally confining layers above and below. A groundwater body lies within the glaciofluvial deposits predominantly controlled by flow to the west and southwest. The groundwater in the glaciofluvial deposits is expected to be in some level of continuity with the Estuary.

The site does not lie within a source protection zone (SPZ) and no groundwater abstraction points are known to lie within the site area. Based on previous desk study information, the groundwater is likely to be brackish.

3.3 Flood risk

Following the previous study, detailed flood monitoring has been undertaken and has identified that the new proposed area for the hotel site would be suitable for development as it is not located within an area of low flood risk.

3.4 Mining

A detailed review of the mining risks to development has been undertaken as part of the 2016 Arup LWLV Desk Study [1] including the proposed development site. A summary of this information is provided below.

The site is underlain by the Hughes Beds of the Upper Coal Measures. The town of Llanelli is known to have been mined for coal in the past, and the geological map shows several mining related features.

There is no evidence to suggest the site was mined for non-coal sources, for example metalliferous ironstones or rock quarries for construction aggregate.

The Coal Authority online interactive map viewer [4] does not show any mine shafts or adits within the development site, and the site is not shown to be located within a 'Development High Risk Area.'

A Coal Authority report was also obtained for the site. The report concludes that the site is not within a zone of likely physical influence on the surface from any past or present underground workings and there are no known coal mine entries within the site or within 20m of the site boundaries.

The preliminary assessment is that there is no significant potential for subsidence associated with any workings within coal seams beneath the site, making it low risk

3.5 Unexploded Ordnance (UXO)

In accordance with CIRIA C681 'Unexploded ordnance (UXO), guide for the construction industry' (2009), as part of the 2016 LWLV Desk Study, a preliminary unexploded ordnance (UXO) risk assessment has been carried out for the site by UXO specialist Zetica. A summary of the findings is provided below.

The following strategic targets were in or in the vicinity of the site:

- Industry including tinplate works, a foundry and chemical works.
- Docks, including landing stages.
- Military training grounds.
- Transport infrastructure.

During WWII the borough of Llanelli recorded a low regional bombing density, however readily available records indicate that several bombs fell near the site during a raid in July 1940.

The Llanelli National Shell Factory (NSF) was located directly to the west, and it was a part of the Burry extension works which engaged in the manufacture of 6" shells and an adjacent factory was engaged in the rectification of 6" shells.

The historical maps from 1889 show a rifle range on the southern end of the Machynys peninsula, approximately 700m from the site. This is shown as disused by 1973.

Because of the above, a detailed risk assessment was recommended to assess, and potentially zone, the Unexploded Ordnance (UXO) hazard level on the site.

A detailed UXO risk assessment for the site was undertaken by UXO specialist Dynasafe BACTEC. The report concluded that Dynasafe BACTEC consider the site to be of low risk from UXO.

3.6 Radon gas

Radon is a naturally occurring radioactive gas that can seep out of the ground and build up in buildings, the highest levels are usually found in underground spaces such as basements.

The site is shown on the UKRadon.org interactive map [5] as being in the lowest band of radon potential, with less than 1% above the Action Level. Therefore, no radon protection measures are required for the proposed development.

4. Previous ground investigations (GI)

4.1 Gl undertaken

There is previous ground investigation information available for the site, sourced from the British Geological Survey (BGS) Archives, Arup's LWLV Desk Study [1] and a factual report of a ground investigation undertaken previously for Carmarthenshire County Council. The location of the exploratory holes on-site is shown in Appendix A. A summary of the type of exploratory hole in each investigation is provided in the table below.

Table 1: \$	Summary of	of previous	ground	investigations
-------------	------------	-------------	--------	----------------

Previous Ground Investigation	Source	Location	Exploratory Holes	Testing and Monitoring
Machynys Redevelopment, Thyssen Geotechnical (1987)	BGS Archive	Off-site	Four trial pits	N/A
Machynys Peninsula Study, Exploration Associates (1995)	BGS Archive	Off-site	Two boreholes, One trial pit	N/A
Nicklaus Hotel, Machynys, Llanelli, Integral Géotechnique (2008)	Integral Géotechnique Factual Report	Off-site	Five boreholes, 13 trial pits	In-situ Static Cone Penetration testing (SCPT) in 8no locations including dissipation testing Laboratory chemical testing on soil, leachate and groundwater samples Laboratory analysis of a gas bomb sample and VOC sample taken Six rounds of ground gas monitoring & 4no rounds of groundwater monitoring (installations within made ground and superficial geology)
Machynys Mound, Soil Mechanics (2011)	Arup Geotechnical & Geoenvironmental Desk Study LWLV	On-site	Two boreholes (up to 8m bgl), 10 trial pits	In-situ Standard Penetration Tests (SPTs) at regular intervals throughout the depth of the cable percussive boreholes Sampling of soils and groundwater in both borehole and trial pit excavations for geotechnical and chemical laboratory testing Three rounds of ground gas monitoring (installations within made ground)

4.2 Ground conditions

Based on the available ground investigation information for the current site (two boreholes and 10 trial pits), a summary of the ground conditions is presented in the table below.

Table 2: Summary of ground conditions

Stratum		
MADE GROUND: medium dense brown silty sandy subangular to rounded fine to coarse GRAVEL of sandstone with medium cobble content. Cobbles are subrounded of sandstone.		
Within the footprint of the backfilled reservoir, the thickness of made ground is anticipated to be around 2m comprising silty sandy fine to coarse gravel of sandstone with medium cobble content (lower layer comprising silty sandy gravel to sandy gravelly clay. Gravel comprises brick, concrete, metal, slag, clinker and industrial waste i.e. plastic, pipes etc.).		
MADE GROUND: medium dense dark grey silty sandy angular to subrounded fine to coarse GRAVEL of sandstone and slag with occasional fragments of brick and concrete with medium cobble content. Cobbles are angular to subangular of sandstone and slag.		
SAND: very loose brown silty fine to coarse SAND (Potentially Raised Storm Beach Deposits based upon geological mapping)		
 GRAVEL: dense locally very dense dark brown clayey sandy subangular to subrounded fine to coarse GRAVEL of sandstone with medium to high cobble content. Cobbles are subangular to subrounded of sandstone. (Potentially Glaciofluvial Ice Contact Deposits based upon geological mapping) 6.50 to 6.89 m: very dense. Did not go below 7.0 m therefore the base is unproven. 		

4.2.1 Soil Mechanics, 2011 GI (on site)

The ground conditions across the site generally consist of gravel overlain by sand and Made Ground of varying compositions (see table above). Groundwater seepages were typically observed between depths of 1 and 3m below ground level, predominantly encountered within the made ground. No groundwater strike was recorded in the borehole which was advanced to 7m below ground (0.2 m AOD), or in the borehole which was advanced to 8 m below ground.

Although no groundwater strikes were recorded in what were described as glacial deposits during fieldwork, groundwater was recorded in the standpipe piezometer from the borehole which was installed in the glacial deposits, which indicated the presence of an aquifer in these deposits.

Depths to water within the standpipes varied considerably and is likely to have changed since 2011. Further monitoring was recommended to be carried out to confirm the results and to include monitoring over a tidal cycle to check whether the piezometer was influenced by the tidal fluctuations in the nearby Loughor Estuary; there is no record of this being undertaken, and to confirm whether the ground investigations remain consistent with the findings of the 2011 report.

During the investigation strong hydrocarbon odours were recorded at the base of the made ground encountered within one trial pit excavated near the site boundary. No other visual or olfactory evidence of contamination was observed during the ground investigation (except for the made ground itself).

4.2.2 Integral Géotechnique, 2008 GI (east offsite)

Groundwater was struck within the made ground in the trial pits at depths varying from 1.5m to 2m bgl with slow to medium inflow rates. The groundwater was recorded as rising from the base of several trial pits. Groundwater levels in the boreholes ranged between 3,90 mAOD and 3.38 mAOD

The groundwater monitoring indicated that there is a discontinuous perched groundwater within the made ground sitting above the underlying Raised Storm Deposits.

No fall in head was interpreted across the site from the groundwater levels recorded. However given the hydrology of the surrounding areas, it is assumed that groundwater flow is to the south/southwest towards the Loughor Estuary. The groundwater body may be affected by tidal movement.

Some minor visual or olfactory evidence of contamination of fill materials was observed during the excavation of the trial pits. This comprised groundwater with a slight to very slight hydrocarbon sheen encountered in 5no locations (TP1, TP2, TP9, TP10 and TP13) and a slight hydrocarbon odour encountered in one location (TP2). No potential asbestos containing materials were visually identified during the site investigation.

5. Contamination potential

5.1 Conceptual Site Model (CSM)

This section details the Conceptual Site Model for the site based on reviewed desk study and available ground investigation information. Constraints associated with geo-environmental issues identified are provided in Section 6.2 of this report.

5.1.1 Potential sources

Because of the history of the site presented in Section 2.2, the primary sources of contamination on the site are associated with the site's industrial history, the made ground present under the site and the backfilling of the reservoirs. A summary of the potential sources of contamination is provided below.

Potential Source	Potentially Contaminative			
On Site				
Made Ground within and near the site area related to the historical use as Machynys Brick Works.	Likely to have been imported during industry construction. Asbestos, Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn), sulphate, phenol, petroleum and polycyclic aromatic hydrocarbons, volatile compounds and cyanide considered potential contaminants, and can pose a particular risk to human health if present in high enough concentrations. Potential for leachable contaminants			
Backfilled reservoir	Based on available ground investigation information the historical reservoir was infilled with materials comprising silty sandy gravel to sandy gravelly clay. Gravel is of brick, concrete, metal, slag, clinker and industrial waste i.e. plastic, pipes etc. (thickness of at least 2m).			
Existing bunds	Materials forming the bunds are of unknown nature and origin. Asbestos, Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn), sulphate, phenol, petroleum and polycyclic aromatic hydrocarbons, volatile compounds and cyanide considered potential contaminants, and can pose a particular risk to human health if present in high enough concentrations. Potential for leachable contaminants.			
Off Site				
Historical railway and tram lines (east of the site)	Hydrocarbons (including petroleum hydrocarbons and polycyclic aromatic hydrocarbons) fuel oils, lubricating oils, greases, solvents, paints, heavy metals, asbestos, phenols and creosote considered likely contaminants. Possible historical herbicides used to control growth on tracks and sidings.			
Engineering works and other industrial units including shell factory	Specific activities undertaken within historical works units (iron, steel and tin plate works as part of "Burry Works' and Llanelli National Shell Factory). Potential contaminants therefore considered to be:			

Potential Source	Potentially Contaminative		
	Asbestos, metals, sulphate, pH, total petroleum hydrocarbons, polycyclic aromatic hydrocarbons, semi volatile and volatile organic compounds, PCBs, phenol and cyanide.		

5.1.2 Potential receptors

The receptors considered relevant to any existing contamination within the subsurface associated with the proposed development are identified as follows:

During Construction:

- Construction workers involved in the development works.
- Off-site residents and workers.
- Surface waters, including that within Loughor estuary and the existing reen east-west of the site and lakes and watercourses that form part of the golf course; and
- Groundwater beneath the site ('A' aquifer).

During Operation:

- Site end-users (hotel guests, visitors and employees).
- On-site maintenance workers.
- Groundwater beneath the site (secondary 'A' aquifer).
- Surface waters, including that within Loughor estuary and the existing reen east-west of the site and lakes and watercourses that form part of the golf course; and
- Building materials used in new development (including services).

5.1.3 Potential pathways

For a risk to exist the (potential) sources and receptors must be connected by a viable pathway. Potential pathways by which human and environmental receptors may be impacted upon are as identified below:

• **Ingestion of contaminated soils and dust**: during construction of the proposed development, site workers who are dealing closely with excavated soils may encounter contaminants through ingestion of soils and dust.

Site end users may also be impacted by the ingestion of soils and dust should existing site soils be present at or near surface level post completion of the development, particularly in any areas of landscaping

Workers, or users of the neighbouring residential or commercial areas may be impacted by the ingestion of soils and dust should areas of open soils be present post development, or dust be created during development.

• **Dermal contact with soils and dust**: during site development, site workers who are engaged in ground works and handling of excavated soils may come into skin contact with impacted material and groundwater.

Following development, site end users (primarily hotel guests, visitors and employees) and maintenance workers may also come into direct skin contact with shallow soils, should these remain at or near surface level post completion of the development in areas of soft

- Inhalation of vapours, dust and gases: volatilisation of hydrocarbons and the emission of soil gases including carbon dioxide, methane, or other toxic and explosive gases may occur in the subsurface and be present in both indoor and outdoor air. Ground gas, potentially generated by made ground and the fill of the historical reservoir if organic materials are present, which may migrate into confined spaces within the proposed building. Generation of dust through earthworks to facilitate the proposed development, may impact construction workers.
- **Gas Migration**: from backfill of reservoir, made ground and estuarine deposits directly beneath or adjacent to the site and into the proposed hotel building if organic materials are present. Should piling be the preferred foundation option for the building these could act as a conduit for ground gas migration. Service trenches and the possible installation of band drains could also act as a pathway for ground gas migration.
- Lateral and vertical migration of contaminants: contaminants released to the ground through spillage or leaks may migrate vertically or laterally through the underlying strata. There is potential for lateral migration of contaminants through contaminated shallow perched groundwater within the made ground. However, in the east, this is discontinuous perched water over cohesive alluvium which acts as an aquitard and therefore significant vertical migration is not anticipated and is likely applicable to this site also.

Service trenches and piled foundations for the building could all act as a conduit for lateral and vertical migration of contamination.

- Leachate generation and migration: there is potential for the generation and migration of leachate from impacted soils which may enter and migrate within the underlying groundwater bodies.
- **Surface water run off** may occur onto nearby land and surface water receptors during construction. Post development the site will comprise some hardstanding at surface level and drainage to manage surface water run-off.
- **Direct contact with building materials corrosion:** there is potential for chemical attack of concrete and pipe materials (of services) because of aggressive ground conditions (pH and sulphates) encountered.

5.2 **Preliminary Risk Assessment (PRA)**

The purpose of this section is to identify the plausible pollution linkages (based on their probability and consequence) and whether there is enough information to characterise them.

The following method of risk evaluation is a qualitative method of interpreting the source pathway receptor linkages identified and is based on that presented in the Land Contamination Risk Management (LCRM) guidance and involves the classification of the magnitude of the potential consequence (severity) of a risk occurring and the magnitude of the probability of the risk occurring.

Once the consequence and probability have been classified these can then compared to produce a risk category which informs the scope of any further ground investigation required.

The identification and justification of the plausible pollution linkages and the associated risk classification are presented in Table 4 of this section.

The proposed development is to comprise a hotel (commercial end use) with associated access and car parking areas and areas of soft landscaping. The available ground investigation data (chemical test results and gas and

groundwater monitoring information) has been reviewed in accordance with the proposed land use, the plausible pollution linkages and the current guidance and screening values to further confirm risks posed to human health and the environment and risks from ground gas. In reference to CLEA assessments, used to assess the potential risk of contamination to human health, it is important to note that the hotel being commercial end use is likely to be conservative, and as such suitable for initial assessments.

With regards to the previous ground investigation and risk assessments carried out by Soil Mechanics on-site (2011) and Integral Géotechnique off-site (2008), the screening criteria previously used have been updated. The chemical data from the previous ground investigations has been re-screened against the following criteria.

Soil Analysis:

The Defra Category 4 Screening Levels (C4SLs) and the Land Quality Management (LQM) / Chartered institute of environmental health (CIEH) 'Suitable 4 Use Levels' (S4ULs) have been used for the following scenarios:

- Residential without plant uptake end use criteria to assess risks posed to construction and maintenance workers (acute exposure);
- Commercial end use criteria to assess risks posed to site end users in proposed building and car parking areas; and
- Public open space (Park) criteria to assess risks posed to site end users in areas of soft landscaping.

Leachate & Groundwater Analysis:

Considering the potential controlled water receptors identified as part of the CSM (reen south of the site) the freshwater Environmental Quality Standards (EQS) have been used or UK Drinking Water Standards in the absence of EQS.

5.2.1 Soil analysis results

Soil Mechanics, 2011 GI (on-site)

Eighteen soil samples were obtained for laboratory chemical analyses. Most of the soil samples were obtained from the made ground. The soil samples were submitted for a range of dry weight chemical tests.

Concentrations of arsenic, lead and vanadium were recorded more than the residential without plant uptake criteria.

Asbestos fibres identified as chrysotile were found within six of the eighteen samples of made ground between 0.3m and 2m below ground level. No quantification testing was undertaken on the identified fibres.

Generally, concentrations of hydrocarbons were recorded to be low in samples of made ground and were below the commercial and public open space criteria. All concentrations of hydrocarbons were below the residential with no plant uptake criteria except for benzo(a)pyrene in one location. Several TPH aliphatic and aromatic levels were recorded more than the residential with no plant uptake criteria in one location within the natural strata at 3m below ground level.

No PCBs were recorded above the laboratory limit of detection in the three samples of made ground analysed.

The results of the VOC and SVOC analyses undertaken on nine samples of made ground indicated generally less than detectable concentrations below all criteria. However, several detected Polycyclic Aromatic Hydrocarbons were above the residential with no plant uptake (analysed for as part of the VOC suite).

Integral Géotechnique, 2008 GI (east off-site)

A total of 15 samples were tested as part of the 2008 GI and these were taken from the made ground. The chemical analysis comprised:

- metals (arsenic, cadmium, total chromium, copper, lead, selenium, mercury, boron, nickel, zinc),
- speciated PAHs
- speciated TPHs (aliphatic-aromatic split),
- sulphate, pH, LOI, TOC, cyanide and phenols

There were several exceedances, including:

- Nine exceedances of arsenic
- one exceedance of PAH (Dibenzo (a,h) anthracene)
- Seven exceedances of lead
- One exceedance of arsenic and Dibenzo (a,h) anthracene was recorded in made ground.

Overall, the chemical analysis carried out as part of the GI indicated a lesser contamination status for the site than the one expected based on the site's history. Although this does not mean it will be consistent with the proposed site despite being in proximity, so further testing is recommended.

5.2.2 Leachate analysis results

Soil Mechanics, 2011 GI (on-site)

Seven samples of made ground were submitted for laboratory leachate analysis for a suite of chemical determinants. The leachate results showed the made ground across the site to contain elevated concentrations of the following:

- leachable copper
- zinc
- arsenic
- molybdenum

all of which were above the assessment criteria.

Integral Géotechnique, 2008 GI (east off-site)

A total of seven samples were tested as part of the 2008 GI and these were taken from the granular (six) and cohesive made ground (one). The chemical analysis comprised:

- metals (arsenic, cadmium, total chromium, copper, lead, selenium, mercury, boron, nickel, zinc)
- speciated PAHs
- sulphates
- pH, LOI, TOC, phenols and cyanide.

Within the made ground samples, the following contaminants were recorded above the screening criteria:

• Elevated cadmium, copper and zinc

• One sample recorded elevated phenols (total).

5.2.3 Groundwater analysis results

Soil Mechanics, 2011 GI (on-site)

Three groundwater samples taken from the two boreholes were submitted for laboratory analysis for a suite of chemical determinants. The samples were obtained from the shallow standpipe installations, within the made ground strata.

Dissolved concentrations of nickel, zinc, chloride and ammoniacal nitrogen were recorded marginally above the EQS values. Other results were well below the screening values or below the laboratory detection limits.

Generally, the concentrations of organic contaminants in samples of groundwater were recorded to be low and below the EQS values. This was except for fluoranthene, which was recorded more than the applied criteria in both groundwater samples obtained from the two boreholes.

One detectable concentration of di-n-butyl phthalate of 0.025mg/l was recorded in the groundwater obtained from one of the two boreholes. No other volatile or semi volatile organic compounds were detected in the samples of groundwater obtained.

Integral Géotechnique, 2008 GI (east off-site)

Four rounds of groundwater monitoring were carried out as part of the 2008 GI. Groundwater sampling and testing was only carried out in three of the four rounds. Monitoring standpipes were installed within the made ground (three), granular alluvium (one) and cohesive alluvium (one). Groundwater samples were taken from all wells and were subject to chemical testing. Wells were purged until the pH, temperature and conductivity of the purged water had stabilised. Samples were taken immediately after purging. The chemical analysis comprised metals (arsenic, cadmium, total chromium, copper, lead, selenium, mercury, boron, nickel, zinc), speciated PAHs, phenols, sulphate and pH (two of the three rounds) and TPH (banded) (all three rounds).

Elevated zinc was recorded above the assessment criteria in all boreholes. Elevated copper and lead were also recorded above the assessment criteria in the boreholes installed within the alluvium and selenium was recorded above the assessment criteria in two boreholes (installed within the alluvium and the made ground). During the first round, the presence of TPH >C24-C40 was identified in all wells, and the presence of TPH>C16-24 was identified in one borehole (installed with the alluvium). No hydrocarbons were detected in any of the boreholes over the next two rounds.

5.2.4 Ground gas

Soil Mechanics, 2011 GI (on-site)

Three rounds of ground gas monitoring were undertaken from the standpipes within the made ground of the two boreholes.

A maximum methane concentration of 4.1 % vol and a maximum flow rate of 2 l/hr were recorded within the monitoring wells providing a GSV of 0.082 l/hr for made ground.

Integral Geotechnique, 2008 GI (east off-site)

Six rounds of ground gas monitoring were undertaken from the standpipes within the made ground. In accordance with the methodology provided in CIRIA C665, as a worst-case scenario, a maximum methane concentration of 1.9% v/v and a maximum flow rate of 0.1 l/hr across all monitoring wells provides a GSV of 0.0019 l/hr for methane and a maximum carbon dioxide concentration of 5.8% v/v and flow rate of 0.1 l/hr provides a GSV of 0.0058 l/hr for carbon dioxide. To confirm this, further monitoring would need to be undertaken as part of future ground investigation.

The underlying alluvium with and backfilled reservoir are also potential sources of ground gas (methane, carbon dioxide) and these have not been investigated (installations within made ground only). Further ground

investigation is required to confirm the ground gas regime under the site and to inform on the requirement for gas protection measures.

Table 4: Preliminary Risk Assessment

Source	Receptor	Pathway	Likelihood	Severity	Risk	Comment
Contaminated made ground within site area related to historical site use	Site End Users (hotel guests, visitors and employees	Direct dermal	Unlikely	Medium	Moderate	Previous GI has indicated asbestos in the form of chrysotile fibres was identified within the made ground across the site (6/18 samples). It is therefore likely to encountered on site and
(Machynys Brick Works, Historical Railway and		Ingestion	Unlikely	Medium	Moderate	as such further ground investigation is required to further understand the distribution across site and quantification testing
tram lines) including contaminated perched groundwater within the		Inhalation of vapours	Unlikely	Medium	Low	should be undertaken on the identified fibres. If levels are proposed to be raised significantly, risks will be lowered with the importing of fill for the raising of the site
made ground Existing bunds of unknown origin and nature Contamination related to		Contact with contaminated water	Unlikely	Medium	dium Low levels for flood risk mitigatio to surface following site deve landscaping. Mitigation meas	levels for flood risk mitigation. made ground remain at or close to surface following site development in areas of soft landscaping. Mitigation measures such as removal of hotspots/suitable capping may be required in these areas.
Engineering Works & Shell Factory (W off-site)						It is unlikely that groundwater is encountered by end site users beneath site as part of the proposed development. Therefore, the risk will be low.
						Although testing for metals, speciated PAHs, speciated TPHs, sulphate, pH, LOI, TOC, cyanide and phenols was undertaken, showing some risk to site users and given the industrial history of the site other sources or results are likely to be identified. Therefore, further GI and assessment is required to confirm the risks posed to site end users, targeting the entirety of the proposed development, particularly in relation to asbestos.
	maintenance Workers Ingestion Inhalation of vapours Contact with contaminated	Direct dermal	Likely	Medium	Moderate	Previous ground investigations indicated elevated arsenic, lead, vanadium, PAHs, TPH and isolated Dibenzo (a,h) anthracene
		Ingestion	Likely	Medium	Moderate	within the made ground.
		Inhalation of vapours	Likely	Medium	Moderate	Elevated concentrations of leachable copper, zinc, arsenic and molybdenum were also above the assessment criteria, along with asbestos in the form of chrysotile fibres was also identified
		Contact with contaminated groundwater	Likely	Medium	Moderate	within the made ground. Constructions workers likely to be exposed as part of development works, during earthworks and enabling works. However, exposure duration will be short term only. Use of PPE and good hygiene practice throughout earthworks and

Source	Receptor	Pathway	Likelihood	Severity	Risk	Comment
						construction phase is considered sufficient to mitigate risks presented.
						Further GI and assessment will be required to confirm risks posed to construction and maintenance workers particularly in relation to asbestos (no testing previously carried out).
						For groundwater, dissolved concentrations of nickel, zinc, chloride and ammoniacal nitrogen were recorded marginally above the EQS.
						For organic contaminants, fluoranthene was recorded more than the applied criteria in both groundwater samples.
						One detectable concentration of di-n-butyl phthalate of 0.025mg/l was recorded in one borehole.
						Further GI and laboratory testing will be required to better understand the distribution and concentration of potential contaminants within the groundwater which could potentially pose a risk to site users, as only 2 boreholes and 3 samples were taken, which were done in 2011 and therefore likely outdated.
	Surface water receptors (Estuary, existing reen south of the site)	Surface water run-off Leachate migration of temporarily	Likely	Medium	Moderate	The risk from surface water run-off during construction will be reduced by the preparation of a Construction Environmental Management Plan prior to any work undertaken on site to minimise or mitigate effects on the environment and the surrounding area.
		stockpiled and exposed excavated soils				Post development the site will likely comprise both landscaping and buildings at surface level. Drainage will manage surface water run-off.
	Groundwater body (within the sand and gravels)	Leaching into groundwater and subsequent flow beneath site	Unlikely	Medium	Low	Previous GI indicated that dissolved concentrations of nickel, zinc, chloride and ammoniacal nitrogen were recorded to be marginally above the EQS values. Fluoranthene was also recorded more than the applied criteria in both groundwater samples. One concentration of di-n-butyl phthalate of 0.025mg/l was recorded within the groundwater obtained from one borehole.
						Only three rounds of monitoring within two boreholes targeting the granular material under the site has been undertaken which

Source	Receptor	Pathway	Likelihood	Severity	Risk	Comment
						was undertaken 13 years ago A review of the current groundwater regime – and contamination beneath the site including further groundwater monitoring and testing is required to confirm risks and further characterise contaminant distribution across the proposed site.
		Preferential pathway for migration created through service trenches, vertical band drains & piled foundations	Likely	Medium	Moderate	The proposed development will create preferential pathways for vertical migration through piling, service trenches and the possible installation of band drains. A Foundation Works Risk Assessment may required to inform on selection of an appropriate piling method any mitigation measures required.
	Building materials (including services)	Direct contact with building materials - corrosion	Likely	Medium	Moderate	Possible chemical attack of concrete and pipe materials (of services) will require assessment to ensure appropriate, resistant materials are used during construction.
	Off-site residents and workers	Ingestion and inhalation of airborne dust	Low likelihood	Mild	Low	Considered dust suppression measures will be adopted during earthworks which will mitigate risks.
	Off-site surface water receptor (Loughor estuary, reen south of the site and lakes and watercourses that form part of the golf course)	Surface water run-off	Unlikely	Mild	Very Low	Post development the site will likely comprise both landscaping and buildings at surface level. Drainage will manage surface water run-off.

Source	Receptor	Pathway	Likelihood	Severity	Risk	Comment
Ground gas related to the made ground under the site backfilled reservoir.	Site End Users (hotel guests, visitors and employees) using confined spaces	Ground gas migration into confined space and inhalation is anticipated if piled foundations are to be included in the design (TBC - (including pathway created through piled foundations, band drains and service trenches).	Unlikely	Severe	Low Risk	 Made ground present under the site is a potential source of ground gas. Review of ground gas monitoring results within the made ground from the previous GI on-site (2008) indicates a CS2 classification (based on the results and C665 gas protection measures recommendations – gas protection measures will be necessary). Further gas monitoring is recommended from any existing monitoring wells (if these are still functioning) and further monitoring wells during GI covering a wider area of the site to confirm the ground gas regime and whether gas protection measures are required by further assessing the distribution.
Ground gas related to the backfilled reservoir.	Site End Users (hotel guests, visitors and employees) using confined spaces	Ground gas migration into confined space and inhalation (including pathway created through piled foundations, band drains and service trenches)	Likely	Severe	Moderate Risk	The backfilled reservoir partially present within the northwestern part of the site is a potential source of ground gas. The Made Ground is historic and did not appear to have significant generation potential. Previous ground gas monitoring concluded that the concentrations were generally low, and although carbon dioxide and methane were identified, without further assessment it is difficult to assess the risks. Therefore, further gas monitoring required to target the backfilled reservoir to confirm level of risk and requirement of ground gas protection measures and support future developments.

6. Preliminary considerations and constraints for site development

6.1 Geotechnical considerations

A review of available information pertaining to the development site has been undertaken, which has identified several geotechnical constraints and potential issues that should be considered as development progresses. These are summarised below.

6.1.1 Obstructions and site clearance

Buried obstructions are expected to be encountered from the historical use of the site. These include disused building foundations (possibly including piles as well as shallow foundations and substructure), disused railways and associated railway infrastructure. As part of the initial site preparation works, de-vegetation and topsoil clearance will be required, where buildings and infrastructure are proposed. Foundations and obstructions, including the backfill of the historical reservoirs which are of unknown extent and composition, should be evaluated as part of the site clearance works to avoid difficulties during later construction of buried services and foundation due to the risk of obstructions and soft/ loose ground.

Any excavations required for shallow foundations or services trenches are anticipated to be within the Raised Storm Beach Deposits and Glaciofluvial Ice Contact Deposits (sand and gravels). Excavation will be possible with conventional earthmoving equipment, however where large obstructions are encountered in the Made Ground the use of a hydraulic breaker may be required. Potential obstructions include the various historical building foundations that may remain on site, in addition to the inclusions within the Made Ground encountered on site, including brick, concrete, metal, slag and industrial waste.

Many trial pits undertaken were recorded as loose and unstable, having a tendency to cave in at the sides within the granular made ground and therefore temporary support measures or very shallow batters may be required for the sides of excavations.

Based on previous ground investigation, groundwater is expected at around 1.10m bgl to 3 m bgl. If excavation below the groundwater level is required, then temporary drainage and dewatering measures may be required; perched water exists locally within the made ground, which may result in moderate water ingress.

Groundwater beneath the site may possibly be affected by tidal effects; a groundwater monitoring survey carried out to identify the extent of tidal effects may need to be considered once development proposals are better defined.

There is potential for buried unexploded ordnance (UXO) within the site, which may be encountered within excavations. The detailed risk assessment undertaken by UXO specialist Dynasafe BACTEC concluded this risk to be low and did not propose any mitigation measures.

6.1.2 Ground raising

As part of the development the ground levels in the hotel, car park and hardstanding areas may potentially require raising. If the levels are raised significantly, the total and differential settlements caused by loading of the underlying ground will need to be assessed when proposed raised ground levels have been determined.

Settlements will occur both in the Made Ground and in the superficial deposits, the likely settlement under loading from the proposed upfilling should be assessed.

Relatively uniform loading over large areas will cause more even settlement, whilst more localised variations in load are likely to result in greater differential settlements with greater magnitude. Further investigation into the settlement characteristics of the superficial deposits is recommended once the development proposals and design are better defined.

It is likely that engineering measures to deal with otherwise excessive settlements of the ground will be needed, for example by causing most of the settlement magnitude to occur prior to construction of the site infrastructure. As the levels and filling is yet to be confirmed, if a significant amount of fill is specified within the design, appropriate measures may include:

- allowing for a waiting period between raising of the site and construction of site infrastructure.
- accelerating settlement rates by techniques such as 'surcharging' and /or use of vertical band drains.

The re-use of excavated material within the proposed development is encouraged, however this would be subject to a geotechnical and geo-environmental assessment. The Glaciofluvial Ice Contact Deposits (sand and gravels) could be suitable for use as engineered or landscape fill. The Made Ground is likely to be highly variable and may contain material that is suitable for re-use as engineered or landscape fill, subject to the geo-environmental assessment.

6.1.3 Foundations

The applied loads from the proposed hotel building are likely to be relatively high and the settlement criteria exceeded if founded directly on the Made Ground or superficial deposits underlying the site.

It is anticipated that the hotel building will need to be piled. A range of pile types would be suitable, depending on the loading conditions.

Displacement piles, such as pre-cast driven piles, driven cast in-situ and auger displacement piles have the advantage that no spoil is generated during installation, which can be expensive to manage and dispose offsite. The main disadvantages of these types of piles are the environmental impact of noise and vibration during installation. The buried historical structures potentially underlying the site may also cause an obstruction to displacement piling methods.

Bored piles are less noisy to install with less vibration. They do however generate spoil that would be disposed off-site or alternatively ways to re-use the material on site could be investigated. Conventional bored piles generally need temporary casing or bentonite fluid to support the bore.

Continuous Flight Auger (CFA) piles have the advantage that they generally do not require temporary casing, as the concrete is installed as the auger is removed, and they are generally much quicker to install. The depth of CFA piles is limited to the length of the augers available, which is commonly in the region of 25m.

There are no overhead lines present within the site, so there are no anticipated constraints to piling techniques available in terms of working headroom.

There is potential for ground gases to be emitted from the Made Ground present on site. This will need a detailed assessment during development of the foundation options and there is potential for protection measures to be required, i.e. under floor void venting and/or gas membranes.

6.2 Geoenvironmental considerations

A review of available information and data pertaining to the development site has been undertaken, which has identified several geo-environmental constraints to the proposed development. These are summarised below.

6.2.1 Human health

The previous ground investigation undertaken on-site has indicated areas of contamination. Asbestos was identified in the form of chrysotile fibres within six of the 18 samples across the site within the made ground across the site. The ground investigation has also indicated elevated arsenic, lead, vanadium, PAHs and TPH (aliphatic and aromatic) within the made ground.

Construction workers are likely to be exposed as part of the development works, during earthworks and enabling works. However, exposure duration will be short term only. Evidence of hydrocarbon contamination has been identified within the perched groundwater within the made ground off site to the south, and this may

be encountered as part of the works. The use of PPE and good hygiene practice throughout earthworks and construction phase is considered sufficient to mitigate the risks presented.

Post development, there is a moderate risk to site end users, should areas of existing made ground remain at or close to surface in areas of soft landscaping, if levels are proposed to be raised using imported fill, this should be utilised only in the hotel, car park and hardstanding areas to minimize the volume of imported material. The risk will be lowered with the adoption of remediation measures, e.g. suitable capping within areas of soft landscaping, removal of hotspots if required etc.

The previous ground investigations on the site were limited in scope and coverage. As such further ground investigation and assessment is likely to be required to support the design of the development.

6.2.2 Controlled waters

During construction, there is a risk from surface water run-off and leachate migration of temporarily stockpiled and exposed excavated soils towards the existing reen present along the southern site boundary. The risk will need to be addressed in the contractor's Construction Environmental Management Plan prior to any works undertaken on site to minimise or mitigate effects on the environment and the surrounding area.

Post development the site will comprise both landscaping, hardstanding areas and buildings at surface level. Drainage will manage the surface water run-off.

Towards the east off-site, groundwater present within the made ground is discontinuous perched water over cohesive alluvium which act as an aquitard, and if applicable to the proposed site significant vertical migration is not anticipated but should be confirmed. The risk from contamination migration towards the deeper groundwater body within the raised beach deposits and underlying glaciofluvial deposits is currently unknown. Further ground investigation is intended to confirm and replace the pre-existing groundwater assessment as it is outdated, therefore as a part of the further ground investigation the status of groundwater on site will be assessed.

The proposed development may create preferential pathways for vertical migration through piling and the possible installation of band drains. A Foundation Works Risk Assessment is required to inform on the selection of an appropriate piling method, design of the band drains and any mitigation measures which may be required.

6.2.3 Ground gas

There are potential sources of ground gas under the site including the made ground and backfilled reservoir if organic materials are present. There is a risk from ground gas migration into the proposed building including the potential pathway created through piled foundations and service trenches.

A review of ground gas monitoring results within the made ground from the previous GI indicates a CS2 situation; protective gas measures would be required for the proposed building.

The backfilled reservoir under the site (of different nature than the made ground present under the site) have not been investigated as part of the ground gas monitoring carried out.

Further gas monitoring is required to confirm the ground gas regime under the site and the requirement of gas protection measures.

6.2.4 Building materials

The nature of the made ground and fill material on the site is such that there is a potential risk of corrosion to building and service pipe materials. As such additional assessments will be required to confirm these risks and the appropriate selection of materials used, to ensure durability within the subsurface.

6.2.5 Imported fill

If the levels are going to be raised, dependent on the amount, it is anticipated that clean fill material will be imported to raise the site levels in the hotel, car park and hardstanding areas. This material will need to comply with an appropriate specification to be re used within the proposed development. There may also be a requirement to import some material to be used as capping in the areas of soft landscaping.

6.2.6 Existing bunds and screening

It is understood that the existing bund at the northern boundary will be retained, and the screen planting will be extended and enhanced where necessary. There is no ground investigation information available for the existing bunds on site. An assessment of the shallow subsurface in these areas, and the existing surface cover, will be required to assess the risks posed to human health. It cannot be ruled out at this stage that some form of remediation and/or mitigation measures will be required in these areas.

7. Conclusions

Although the site, including the proposed residential area is subject to risks including flooding and contamination, this has been suitably designed into the proposal through utilising the available flood monitoring to ensure the development avoids these high-risk areas. The application will also consider and assess the contamination risks present within the confirmed red-line boundary and propose remedial measures to remove or treat any unsuitable or contaminated soils to a standard required for residential development. This risk can be mitigated through suitable planning and an appropriate remediation strategy and/ or avoiding contaminated soils, with details to be confirmed as part of the planning permission.

8. Recommendations for further work and ground investigation

A data gap analysis has been carried out as part of the review of the available ground investigation information for the site. The findings of the analysis are summarised below:

- The previous ground investigations do not cover the entire extent of the site, therefore the nature of materials below ground, and the extent and distribution of contamination on site is poorly understood.
- Very little geotechnical testing has been carried out as part of the previous ground investigation, limited to in-situ Standard Penetration Tests.
- Three rounds of ground gas monitoring were undertaken within the Made Ground, but there has been no gas monitoring installation within the backfilled reservoir present under the site.
- There have been no gas monitoring installations within the superficial deposits.
- There have been no groundwater monitoring installations with the glaciofluvial deposits and the granular sand and gravels.
- No quantification asbestos testing has been carried out as part of the previous ground investigation, despite chrysolite being detected.
- Sampling of soils and groundwater in both boreholes and trial pit excavations were taken, but do not cover the entirety of the site and are likely outdated.
- No Waste Acceptance Criteria testing has been carried out as part of the previous ground investigation.
- The last ground investigation was undertaken in 2011, likely outdated.

Based on the above, further information is required to ascertain the full thickness and consolidation characteristics of the estuarine alluvium across the site and to provide more robust data on soil, groundwater and gas contamination, for subsequent risk assessments to be undertaken.

It is recommended that a ground investigation including the following is specified and undertaken on the proposed development site in line with BS10175:2011 (Investigation of Potentially Contaminated Sites – Code of Practice):

- A number of machine excavated or hand dug pits in the existing bund of the site to provide samples for geo-environmental testing;
- A number of cable percussive boreholes taken into the underlying glacial deposits at around 15-20m depth, with undisturbed samples within the superficial deposits and combined groundwater and gas standpipes to provide appropriate samples for testing.
- Ground gas monitoring from any existing monitoring wells on-site (if these are still functioning) to confirm the ground gas regime and requirement of gas protection measures.
- Installation of boreholes within shallow made ground comprising the backfilled reservoir on the site for ground gas monitoring.
- Installation of boreholes within the deeper Raised Storm Beach and Glaciofluvial deposits below the water table for groundwater monitoring.
- Geotechnical testing of samples taken from the boreholes including the consolidation characteristics of the superficial deposits

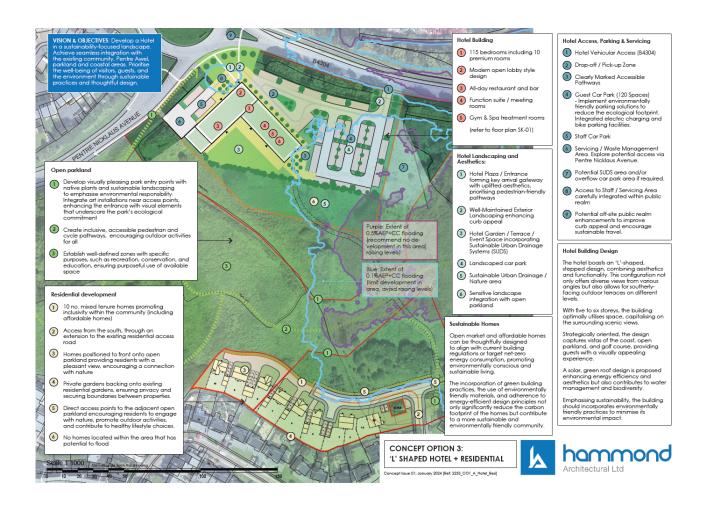
• Geo-environmental testing of soil, leachate and groundwater samples from the boreholes and trial pits including asbestos identification and quantification, heavy metals, PAH, TPH, VOCs and SVOCs, PCBs to inform human health and controlled waters risk assessments and WAC testing to inform off-site disposal options should excavated materials be not suitable for re-use.

9. References

- [1] Arup, "Llanelli Wellness and Life Science Village (LWLV) Geotechnical and Geo-environmental Desk Study," 2016.
- [2] B. G. S. (BGS), Map Sheet 247, Swansea Bedrock and Superficial (1:50,000), 2011.
- [3] B. G. S. (BGS), "GeoIndex Onshore," 6 August 2024. [Online]. Available: https://mapapps2.bgs.ac.uk/geoindex/home.html.
- [4] C. Authority, "Map Viewer," [Online]. Available: https://datamine-cauk.hub.arcgis.com/. [Accessed 4 October 2024].
- [5] U. H. S. Agency, "UKRadon," [Online]. Available: https://www.ukradon.org/#:~:text=Welcome%20to%20UKradon.%20Every%20building%20has%20radon%20and%20in%20most. [Accessed 4 October 2024].

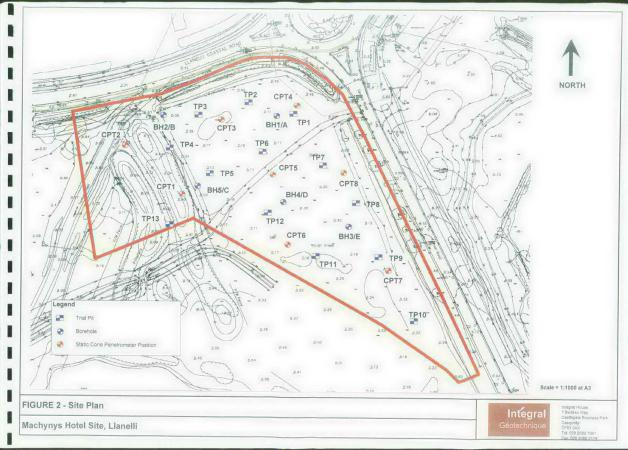
Drawings

Drawing 1: Site boundaries Drawing 2: Development proposals


	Application Land Ownership Application Boundary Inferred Proposed Hotel Boundary Coordinate System: British National Grid
	P01 03/10/2024 CG ST TS ARUP Rev Date By Chkd Appd Authd ARRUP ARRUP 4 Piertnard Street Caddref CF10 40P 44/28 2047 3727 www.anup.com Client Client Carmarthenshire County Council
	Project Name Machynys Hotel Geotechnical and Geoenvironmental Desk Study Drawing Title Site Boundaries
Jarteouzzteke. 404 Internal Project Data/-17 Technical Notes/Gestechnics/BIS/Methyrus Desk Study Note.	1:5,000 Role Geo-Environmental Sublikity Issue 278688 Drawing Name

ARUP

Job number


Date

PJN 10 September 2024

Appendix A

Previous ground investigation

Strathedral Road Centred Control Strathedral Road Centred Cit 19 SL Centred Cit 19 SL Centred Cit 92 2020452 Fax 028 2034 0789 manginegrageotec.com					ect Nan Chyny	rs Hotel	Project No.: 9811	Trial Pit M TPO Sheet 1 or	
Location : Llanelli			Clien	t : Mac	hynys Homes	Logged By : TAW	Scale : 1:25		
Equipment	JCB3CX			Coordi	nates :		Dimensions 2.00m Depth : E 2.50m E		
Date Excav	ated : 17/	04/2008		Level :					
Sample Depth (m)	s & In-si Type (tu Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum	Description		
0.30-960	D		2.50			TOPBOLS Soft provin signing yourship and multiter and nodes to make the soft of the MAND Locally opherics Signing and your metal, stag, and plastic.	errea block brown grawelly stilty		
emarks:			G	roundwa	ater : Gr	oundwater encountered at 2.0m with slight			
			1		hys	frocarbon sheen.	Key : D - Small disturbed sample EI - Burk disturbed sample ES - Environmental soil san W - Water sample		

ł ł I l ł I I I I I I

Geoted		50 Cathedral R Cardiff CF11 9 Tel. 029 20220 Fax. 029 2034 mail@integralg	LL 462 0789		tt Nan hyny	e∶ s Hotel	Project No.: 9811	Trial Pit No.: TP02 Sheet 1 of 1
Location : Llanelli				Clien	t : Mac	hynys Homes	Logged By : TAW	Scale : 1:25
quipment	: JCB3	cx		Coordi	nates :		Dimensions	2.00m
Date Excav	ated : 1	17/04/2008		Level :			Depth: 5 2.10m o	
Sample Depth (m)	s & In	situ Testing	Depth (m)	Level	Legend	Stratum Dei	cription	
2.00	D D	Results	2.10			TOPEOL Revel growing in so that shown with much organs (matter and notified) MADE GROUND Medium drives locally dense with occasional grave to boolder sized fragm	agetej gravetly sandy silty e orange becoming block, is and bolders. Slightey a eris of brick.	brown sitty
								-3
								-4
			1	Groun	dwater	Groundwater encountered at 2.0m with slight hydrocarbon sheen and odour.	Key:	Ľ*
Remarks:							D - Small disturbed se B - Bulk disturbed se ES - Environmental s W - Water sample	

l

Section 2	COLCO MUSIC	50 Cathedral Ri Cerdiff CF11 9L Tel: 029 202204 (Fax: 029 2034 (mail@integraige	L 462 1789	Ma	ect Nar Chyny	ne : /s Hotel	Project No.: 9811	Trial Pit N TPO3 Sheet 1 of
Location Llanelli				Clien	nt:Mac	hynys Homes	Logged By : TAW	Scale : 1:25
Equipment	JCB3CX			Coordi	inates :		Dimensions	2.00m
Date Excav	valed : 17/	04/2008		Level :			Depth : E 1.50m 2	
Sample Depth (m)	es & In-sit	u Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum	Description	
			0.10			TOPSOIL Reeds growing in soft dark bro with much organic matter and rootlets.		LAY
					· ·	Firm locally stiff gravely slightly sandy si		
			0.40		1	Firm locally soft blue grey silty CLAY.		
			[]		-13			
			1	Ì	7 7 7			
				È				
			1					
1.50	D		1.50	5	2.2			
marks:		-	G	roundwa	ater : Sa	turated topsoil. Trial pit dry.	Key : D - Small disturbed sample B - Buk iduubed sample ES - Environmental so sam W - Visier sample	-5

ł I I ł ł I I

sint Geotec	Č() Lati		2 89		ct Nam chyny:	e : s Hotel	Project No.: 9811	Trial Pit No.: TP04 Sheet 1 of 1
Location Llanelli	;			Clien	t : Mac	hynys Homes	Logged By : TAW	Scale : 1:25
Equipment	JCB3	эсх		Coordi	nates : •		Dimensions	2.00m
		17/04/2008		Level :	-		Depth : 50m 0	
Sample Depth (m)	es & Ir	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum Des		
0.30-0.80	D		0.10			TOPSICI, Sind and hown sightly grantly as regarin maker and rooted. WADE GROUND Film gray brown sity CLAY	dy silly CLAY with much	
1.50	D		1.30			MADE GROUND Dense black cobbiey gravely discolouration and occasional slag trail PL Complete a		
								-2
Remarks	:	I	J		dwater ty : Stabl	No groundwater encountered.	Key : D - Small disturbed set B - Bulk disturbed set B - Environmental se W - Water sample	npie npie itsarcie

Ē

(DICOPE Geotechniqu	S0 Cathedral Road Cerdiff CF11 9LL Tel. 029 20220462 Fax. 029 2034 078 mail@integralgeou	2		ct Nar hyny	s Hotel	Project No.: 9811	Trial Pit N TPO Sheet 1 of
Location : Llanelli			Client	: Mac	hynys Homes	Logged By : TAW	Scale : 1:25
Equipment : JCB3	CX		Coordin	ates :		Dimensions	2.00m
Date Excavated :	7/04/2008		Level :			Depth : E 2.50m o	
Samples & In- Depth (m) Type	situ Testing Besuits	Depth (m)	Level (m AOD)	Legend	Stratum D	Let cription	_
		0.10			TOPSOIL Soft dark brown slightly gravely organic matter and rootlets.		
	ł	0.30 -		****	MADE GROUND dark brown silty sandy Gi	RAVEL	
0.30-0.60 D	[0.30 -	8	***	MADE GROUND Soft locally firm reworked	grey brown silty CLAY.	
		0.60		***			
					MADE GROUND Modum dense crange bi occasional cobbles and boulders. Slightly a	ick brown silly clayey sandy Gi shy.	RAVEL with
2.00 D		1.50	· 1월 41일 : 1월 11일 : 1 1월 11일 : 1월 1		Soft locally frm grey silty CLAY becoming as below 2.0mbgl.	aturalled uncompact clayey SIL	т
	- 2	.50		1.72	Trial Pit Complete	#2.50m	
Bmarks		G	roundwa	ter : Sa	urated below 2.0m	Kay : D - Small distanced sample ES - Environmenta el sam W - Water Sample	

I l I I

SO Cathedral Ros Cardiff CF 11 9LL Tel. 029 202204 Fax 029 2034 07 mail@inlegraige	52 789	Project N Machy	ame : nys Hotel	Project No.: 9811	Trial Pit No.: TP06 Sheet 1 of 1
Location : Llanelli		Client : M	achynys Homes	Logged By : TAW	Scale : 1:25
Equipment : JCB3CX		Coordinates	: -	Dimensions Depth : E	2.00m
Date Excavated : 17/04/2008		Level : -		Depth: E 2.30m o	
Samples & In-situ Testing	Depth (m)	Level (m AOD) Leg	nd Stratum D	Ascription	
0.33-040 D	0.10	1	Intelliging and the server with the growthy conserver of the server of the growthy and the server of the serv	whirph stained silty very sand	y GRAVEL
			The PA Carel	# 2 10m	-4
Remarks:	-	Groundwa	er : Groundwater encountered at 2.0m.	Key :	
		Stability :	lightly Unstable	D - Small disturbed sa B - Bulk disturbed sa ES - Environmental sc W - Water sample	sanote AGS.

ľ

-Geotec	eojel Muine	50 Cathedral Ro Cerdiff CF11 9L Tel: 029 203204 C Fax: 029 2034 C mail@integraige	1. 162 1789		ect Nar chyny	s Hotel	Project No.: 9811	Trial Pit N TP07 Sheet 1 of
Llanelli	:			Clien	it : Mac	hynys Homes	Logged By : TAW	Scale : 1:25
Equipment	JCB3CX			Coord	inates :		Dimensions	2.00m
Date Excav	ated : 17/	04/2008		Level :			Depth: § 2.10m c	
Sample Depth (m)	s & In-sit	Results	Depth (m)	Level (m AOD)	Legend	Chestowy	Description	
0.30.0.60	D		210			TOPSOL Sch zown signs granuly and mitter and noise. Model Control Reg Martin dense of the bi Model Control Reg Martin dense of the bi at 1.00mbg. Becoming dense to very den	as lower lifty deyry landy G the of the state of income the forw 2 dm	
marks						groundwater encountered		

I 1 I

50 Cathedral Road	Project Name :	Project No.:	Trial Pit No.:
Certific Creating Control Road Cardit CF11 SeL Tel 029 20220462 Fax 029 2034 0789 mail@misgrageolec.com	Machynys Hotel	9811	TP08 Sheet 1 of 1
Location : Llanelli	Client : Machynys Homes	Logged By :	Scale : 1:25
		TAW Dimensions	
Equipment : JCB3CX	Coordinates : -		2.00m
Date Excavated : 17/04/2008	Level : -	Depth : 5	
Samples & In-situ Testing Depth Depth (m) Type Results (m)	Level (m AOD) Legend Stratum Des		0-
0.39-0.60 D	TOPICID, Bot team rights grawity and yo were an obtain. MICE ERCURCH Meture dans charge block additional coates: Record dates to wy i		
200 D	The Pi Company	e 2.10 m	-2
			-3
			-4
Remarks	Groundwater . No groundwater encountered Stability : Stable but with some overbreak.	Key: B: Bind datafold aan B: Energy a statuted aan B: Energy and a statuted aan W: Water sample	sum stam stamptice

CLOB		50 Cathedral Ro Cardiff CF11 9L Tel. 029 202204 Fax. 029 2034 0 mai@inlegralge	.L 462 3789	Ma	ect Nan chyny	^{s Hotel}		Project No.: 9811	Trial Pit I TPO Sheet 1 c
Location Llanelli	1:			Clier	t : Mac	hynys Homes		Logged By : TAW	Scale : 1:25
Equipmen	t : JCB3C)	(Coord	inates :		Di	mensions	2.00m
Date Exca	valed : 17	/04/2008		Level				Depth : 2.00m o	
Sampl Depth (m)	es & In-si Type	tu Testing Results	Depth (m)	Level (m AOD	Legend	Stra	atum Descript	ion	
0.39-0 80	D		- 200 -			TOPPOLIS Soft back signly party MARCE ORDAND Medium downe bu MARCE ORDAND Medium downe bu Region and Software with excession and Software and Software and Software and Software Internet		sandy GRAVEL with ou	casou
emarks		-	G	roundw	ater : Gn	undwater encountered at 1.5m with	slight	ey : - Smail disturbed sample - Envariantia - Envariantia aoi sam	

I I I

S0 Cathedral Road Cardiff CF11 9LL Tel. 029 20220492	Project Nar Machyny		Project No.: 9811	Trial Pit No.: TP10
Fax. 029 2034 0789 mai@integralgeotec	om			Sheet 1 of 1 Scale :
Location : Llanelli	Client : Mac	hynys Homes	Logged By : TAW	1:25
Equipment : JCB3CX	Coordinates :		Dimensions Depth : E	2.00m
Date Excavated : 17/04/2008	Level : -		Depth : 5	
Samples & In-situ Testing D Depth (m) Type Results (th Level Legend			
0	87.360	TOPSOIL Soft dark brown slightly gravely sat organic matter and rootlets.	ndy silty CLAY with much	
0.30-0.60 D		Mutic GOUND Medun dere from net al construction of a solid net network of solid grane to cobble soul flagments of sig solid to cobble soul flagments of sig	hy clayey sandy GRAVEL	-1
				9
Remarks:	Groundwater	Groundwater encountered at 1.5m.	Key: D. Small distantiation	
	Stability : Rela	tively stable.	D - Small disturbed sa B - Bulk disturbed sam ES - Environmental so W - Water sample	rample AGS

CEOR	ional Anton	Cardiff CF11 SL	.L 462 0789		ect Nar Chyny	ne : rs Hotel	Project No.: 9811	Trial Pit N TP1 Sheet 1 of	1
Location Llanelli				Clier	it : Mac	hynys Homes	Logged By : TAW	Scale : 1:25	
Equipmen	(: JCB3C)	¢		Coord	inates :		Dimensions	2.00m	_
Date Exca	vated : 17	/04/2008		Level			Depth : E 2.00m o		
Sampl Depth (m)	es & In-si Type	tu Testing Results	Depth (m)	Level (m AOD	Legend	Stratum	Description		T
0.30-0.60	D			(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		TOPBOS, Soft dan bown singly gaussi gamte maker module. Loose time medium dense granely SAND of MARC enDLVK datum dense granely SAND and Control of Sand Sand Sand Sand Sand and Charles and Sand	ash and slag econing black dark brown silty nd boulders.	clayey	-3
emarks			G	roundw	ater : Gr	oundwater encountered at 1.6m	Key :		5
			S	ability :	Relative	(debt-	D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil sam W - Water sample	AGS	l

1 I ł ł I I

SU Cathedral Road Cardif Cf 11 9LL Tet 029 2024 0789 Fax 029 2034 0789 mail@niegralgeolec.com	Project Name : Machynys Hotel	Project No.: 1 9811	Frial Pit No.: TP12 Sheet 1 of 1
Location : Llanelli	Client : Machynys Homes	Logged By : TAW	Scale : 1:25
Equipment : JCB3CX	Coordinates : -		2.00m
Date Excavated : 17/04/2008	Level : -	Depth : 5	
Samples & In-situ Testing Depth Depth (m) Type Results (m)	Level Legend Stratum Des	cription	
0.30-060 D	TOPICO, Bolt de sound altrifu grandine au Marciel CACURT, Meiller, Meiller, Berning Kongel Marciel CACURT, Meiller, Meiller, Berning Kongel Barting Statistica autocan rai alanger reconnect al C	ming black dark brown silly oliky dia outdies. Weln much silling from 1	
Remarks:	Groundwater : Slow groundwater inflow at 1.7m with rising groundwater from base of pit at 2.0m.	Key :	5
	Stability : Stable	D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil samp W - William sample	• AGS

Location: Laneti: Clent: Machynys Homes Logod fy: TAW Sode Equipment: JCBSCK Coordinate: - Destination 2.00m Date Ecounties: Trolucions Destination Destination 2.00m Seripties E (mail) fraintry Destination 0.0000 0 1.00000 Molecular Structure (Coordinate) 2.00m Seripties E (mail) fraintry Destination 0.0000 0 1.00000 Molecular data Structure (Coordinate) 2.00m 0.00000 D E.200 Destination 0.00000 0 1.00000 Molecular data Structure (Coordinate) 2.00m 0.00000 D E.200 Destination 0.00000 Molecular data Structure (Coordinate) <	COOL	Cijiel Datac	50 Cathedral F Cardiff CF11 S Tel. 029 20220 Fax: 029 2034 mai@integrals	9LL 0462 1.0789	Ma	ect Nar chyny	ne : /s Hotel	Project No.: 9811	Trial Pit N TP13 Sheet 1 of
Explorent: JCD/2014 Coordinates: Dibitities 2.00n Simplifying Teel Review Inert: 2.00n Description Sec. Description Sec. Description Sec. Description Sec. Description Sec. Sec. <th>Llanelli</th> <th></th> <th></th> <th></th> <th>Clier</th> <th>nt : Mac</th> <th>hynys Homes</th> <th></th> <th></th>	Llanelli				Clier	nt : Mac	hynys Homes		
Sample 3 (n value freing) Period Mark Action Stratum Company Stratum Compa	Equipment	I : JCB3C	x		Coord	inates :			2.00m
Depth/m Type Result (n) In Add (speed Statuto data constraints of the status data constate status data constate status data constrate status	Date Exca	vated : 17	/04/2008		Level	-		Depth : E 2.30m -	
0.30 0.00 D TOPONUL Solid back local kiplet gravity cardy still that Toponul solid still the solid stress still the solid still the solid still the solid stresolid	Sample Depth (m)	es & In-s Type	itu Testing Results	Depth (m)	Level (m AOD	Legend	Stratum Des	cription	
0.300.00 D				-	-	38	TOPSOIL Soft dark brown slightly gravely san		
marks: Oroundwater Sign growdwater infor exponence at 1.6m	0.30-0.60	D					MACE GROUND Medum drave face das to media and occasional occides and are boulde a drage	over stightly gravenity SAND to of Encl. between D.6 and	with race
							The Fit Computer of		
with very suget hydrocarbon sheen. D - ond stinited sample Stability : Relatively stable . B - benomenal and sample D - benomenal and sample D - benomenal and sample	emarks:			G	roundw	ater : Sii	ght groundwater inflow encountered at 1.8m th very slight hydrocarbon sheen,	Key :	

l I I I I I I I I I I I

APPENDIX D

ŧ.

BOREHOLE LOGS

1000	DCE	hiere	Calerphiliy Tel: 029-25 Fils: 029-2	xuse 7 Beddau Way Businoss Paix CF83 2AX X807941 C802176 Y81goclec.com	Project I Machy				Project No.: 9811	Borehole BH [*] Sheet 1 or
Loca	ttion : elli				Client M	achyny	s Home	28	Coordinates	Hole Type
Equip	ment : I	Dando 200	00		Diameter o	f Casing	: 200 m	im	Level : -	Cable Scale :
Diame	ter of F	loring : 20			D				Dates	1:50 Logged By
Well	Mator	- Sam	ninc P	In-situ Testing	Depth of C		6.00 n	nBGL	30/06/2008	M.B
	Strikes	Depth (n	n) Type	Results	(m)	Level (m AOC) Legend		Stratum Description rown orange sitty clayey same	
	233m 240m	1.00 1.00 2.00 2.00	CPT B CPT B	N+8 (2,1,1,1,2,2 N+3 (1,0,1,0,1,1	,			occasional cobbles with	occasional fragments of brick	and tile.
	Nama yin 340 m	3.00 3.00	SPT B	N#3 (1.0,1.0,1.1)	2.80			Soft grey silty CLAY.		
	-186 n	4.00	SPT	N=2 (1.0.1.0,1.0)	4.80					
		5.00	SPT	N=6 (1.1.1.2.1.2) N=6 (1.1.2.1.1.1)				Soft to firm brown PEAT		
22		0.00	31-1	N=0 (1,1,2,1,1,1)			16. 16. 1 16. 16. 16. 16. 16. 16.			
1. J. s.					6.40 6.50			Soft grey silty CLAY.	f of Borehole at 6.50 m	
		Septh (m);	Туре	Results						
Remar	ks :						R D B ES	ey : - Small disturbed sample - Bulk disturbed sample S - Environmental sol sample 21 - Standard Penetration Test (sp.	W - Water sample U - Undistutted sample TCR - Total Care Recovery II spoonISCR - Solid Care Racovery II spoonISCR - Solid Care Racovery Id conel RQD - Rock Quality Design	AGS

CISC CISC) (nat) Cecilia	dove !:	029 238	se, 7 Beckhu Way kusiness Park F83 27AX 07961 162176 Mgeolec.com		ect Na chyr	ame: I ys H	otel		Project No.: 9811	Borehole No.: BH2 Sheet 1 of 1
Locat					Clien	t Ma	chynys	Home		Coordinates :	Hole Type : Cable
Llane											Scale :
Equipr	nent : D	ando 2000			Diame	eter of	Casing :	200 m	n	Level : -	1:50
Diame	ter of B	oring : 200	mm		Depth	of Ca	sing :	7.00 m	BGL	Dates 01/07/2008	Logged By : M.B
Nel	Water	Samp Depth (m)	les & I	n-situ Testing Results		Depth (m)	Level (m AOD	Legend	s	tratum Description	
		1.00 1.00 2.00 3.00 4.00 5.00	CPT B SPT SPT SPT SPT	N=3(23,10) N=3(10,10) N=3(10,10) N=3(10,10) N=4(10,13) N=7(12,122)	.1)	1.10			MUE CROUND Black Boy costanting with the performance and young and the second Uncompact cayery SUT	asional fragments of brid	k and tile.
X				1	E E	6.70			Soft grey silty CLAY.	of Borehole at 7.00 m	
		Depth (m	Turn	Result	-	-	1				
	roundw			Nebuit	e				Key : D - Small disturbed sample B3-Bulk disturbed sample E3 - Environmental sol sample 577 - Standard Prenviration Test (sp CPT - Standard Prenviration Test (sp CPT - Standard Prenviration Test (sp	W - Water sample U - Undeturbed sam TCR - Total Core Re Hit spoon/SCR - Solid Core for Hid cone) RQD - Rock Duarty	ore Covery Covery Covery Designation

22.22	ledi	COLL	Camphily Camphily Tel: 029 20 Fax: 029 20		Proje Mac		ame∶ Iys H	lotel		Project No.: 9811	Borehole BH: Sheet 1 o	3
Llane	ition : Mi				Client	Ма	chynys	s Home	\$	Coordinates :	Hole Type Cable	
quipr	ment : C	ando 20(00		Diamet	er of (Casing	: 200 m	m	Level : -	Scale : 1:50	
Jiame	ter of B	oring : 20	Omm		Depth o	of Cas	ing :	6.00 m	BGL	Dates 03/07/2008	Logged By	c
Well	Water Strikes	Sam Depth (n	ples &	n-situ Testing Results	D	epth m) (Level m AOD	Legend		Stratum Description	M.B	
	Verage by and a second	1.00 1.00 2.00 3.00 3.00 4.00 5.00	CPT B CPT B SPT B SPT	₩*\$ (1,1,1,1,1,2) ₩*8 (1,0,4,1,2,1) ₩*0 (1,0,4,1,2,1) ₩*2 (1,0,1,0,1)		0			Soft gray sity CLAY.	om orange silv days yaa casional fragments of neo angeneration of the second seco	g (GRAVEL with is with	
emar		epth (m) .	Туре	Results				Ke 0-	71 Smail disturbed sample Bita disturbed sample Exercimenta dis Jampie Exercimenta di Schematica Standard Penetration 1691 (pole	W - Water sample		

1 1 1

		giel Ique	egral Hou stopato () erphily C I. 029 208 a. 029 208 #2015	e 7 Beddau Way unintst Park 783 2AX 17991 62178 Ispose: com		ect Na chyr	ame : I ys H é	otel		Project No.: 9811	Borehole No.: BH4 Sheet 1 of 3
cation	_				Clien	t: Ma	chynys	Homes		Coordinates :	Hole Type : Cable
uipmer	nt : Da	indo 2000			Diame	eter of	Casing :	150 mr	1	Level : -	Scale : 1:50
ameter	of Bo	ring : 150			Depth	of Ca	sing :	21.40	1BGL	Dates 04/07/2008 - 07/07/2008	Logged By : M.B
ell W	/ater	Samp Depth (m)	les & I	n-situ Testing Results		Depth (m)	Level (m AOD)	Legend	s	tratum Description	
. Etc.	200 m	1.00 1.00 2.00 2.00 3.00 3.00 4.00	CPT B CPT B CPT B SPT B	N=6(1.0.3.2.1 N=6(1.0.2.1.1 N=6(1.0.1.1)	.t) .t)	3.70			MUCE CROUND Ensurge coblex with occasional rule Soft gray stilly CLAY. Got to firm brown PEAT	y pily citypy sandy GRAV	EL with occasional
		5.00	U	7		5.80			Soft grey sity peaty CLAY.		
	Rangia 810m	8.00	U	6		7.30			Soft to firm brown PEAT. Soft grey silly sandy CLAY.		
<u>_</u>		Depth (m) Type	Result	8		1	F	Key:	Continued next sheet)	
ema	irks :								Ny : D - Simal disturbed sample B - Bulk disturbed sample ES - Environmental soit sample SITT - Standard Panetration Test (k CPT - Standard Panetration Test (k	W - Water sample U - Undesurbed sam TCR - Total Core Ret pit spoon/SCR - Solid Core Ret pit spoon/SCR - Solid Core Ret	

			asticyalı asticyalı el. 029 20 av. 029 20 al (Britag	use, 7 Beddau Way Business Park DR3 2AX 607991 1862178 raigeotac.com	Project N Machy		lotel		Project No.: 9811	Borehole I BH4 Sheet 2 of
Loca Llane	tion : elli				Client: Ma	schypu	s Home	s	Coordinates :	Hole Type
										Cable
Equipr	ment : D	ando 200	0		Diameter of Casing : 150 mm				Level : -	Scale : 1:50
		ring : 150			Depth of Ca	sing :	21.40	mBGL	Dates 04/07/2008 - 07/07/2008	Logged By M.B
Neti	Water Strakes	Samp Depth (m	Type	n-situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum Description	
					Ē			Soft grey silty sandy CLAY		
1					10.50			Uncompact sandy SILT w		
					E :			oncompact balloy SET wi	ui some min peat bands.	
22		11.00	U	4	E		1860			
							14.15			
X										
					E E		552			
					1	1	XXXX			
	- 1					- 6				
Q8	1				E	ŀ				
81		1			E		XEXX			
	1				1					
21						E E	X.4.2.			
		14.00	U	3	E 4	- 6	1111			
24					1	ŀ				
		1	- 1		- 1	Ę.	222) 222			
			- i			ŀ				
8					EI	- B	CARA .			
					E 1		222			
					1	E E				
			- 1			Ē	222			
					1	- B	10			
					E 1	- R	2.27			
					E 1	E	333			
8					1	- E	38			
<u>88</u>					1	1	CAGO L C R			
		1			1	E.				
-					1		- 22			
1					1	1 × ×	53			
÷.					1		33 I.			
8						- 6				
					11	100	* *			
2					11					
8						1	20			
4	D	epth (m) T	ype	Results	+ +	-6	525			
emar							Ke	y: ICa	W- Water sample U - Undsturbed sample TCR - Total Core Recovery sponijSCR - Solid Core Recovery cone) R2D - Rock Quality Designa	
									W - White counts	

ł l I 1 ł I I I l I ł I

hiterati House 7 Beridau Way Castegan Buancos Pari Castegan Buancos Pari Cost Cost Castegan Buancos Pari Cost Cost Castegan Buancos He Cost Stateman Castera He Cost Statem								otel		Project Name : Project No :: Borehol Machynys Hotel 9811 BH Sheet :				
ocatic Ianelli					Clier	nt: Ma	chynys	Homes		Coordinates :	Hole Type Cable			
Equipment : Dando 2000					Diam	neter of	Casing	150 mn		Level : -	Scale : 1:50	_		
iameter	r of Borin	g : 150r	nm		Dept	h of Ca	sing :	21.40 m	BGL	Dates 04/07/2008 - 07/07/2008	Logged By M.B	:		
Vell V	Nater Strikes De	Sampl	es & li	n-situ Testing Results		Depth (m)	Level (m AOD	Legend		Stratum Description		2		
				THE SOLO		20.70			Uncompact sandy SiLT w Medium dense to dense o	ith some thin peat bands. layey sity cobbly GRAVEL.		-2		
	1	21.00	в			21.40			Chiselling 1hr from 21	3m to 21.4m d of Borehole at 21.40 m		1		
- 1					Ē			1 1	e,	Id of labrenole at 21.40 m		f		
												22		
					-							-2		
												2		
												-2		
												-2		
												-2		
						-						ł		
												,		
Rema		epth (m)	Туре	Result	•				Key : D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil sample EST - Crossived Execution Test	W - Water sample U - Undesurbed sam TCR - Total Core Re (spl4 spoor)SCR - Solid Core Re (solid core) RQD - Rock Quality I		- S		

Gét	. (hí Dech	Corel algue	Castegal Camphily Tel: 029 2 Fax: 029 2 moliĝinte	ouse 7 Beddau Wity : Business Park CF83 2AX 9807401 10562176 graigeoinc.com	Project M Machy	nys Hotel		Project No.: 9811	Borehole No. BH5 Sheet 1 of 3
Loca					Client: M	achynys Home	\$	Coordinates :	Hole Type : Cable
Equipr	ment : C	lando 201	00		Diameter of Casing : 150 mm Level : -				
Diame	ter of B	oring : 18	50mm		Depth of Ca	ssing: 20.50 i	nBGL	Dates 1107/2008 - 14/07/2008	1:50 Logged By :
Well	Water Strikes	San Depth (r	pies &	In-situ Testing Results	Depth (m)	Level (m AOD) Legend		tratum Description	M.B
		1.00	CPT	N=6 (2.2.1,1,1,3)			MADE GROUND Brown gre cobbles with ash, slag and r Chiselling 0.5hr from 0.4d	y silty clayey sandy GRAV rubble.	EL with occasional
	2.40 m	2.00 2.00	В	N=5 (1,1,1,1,1,2)	2.50		Soft to firm grey sity CLAY.		
	250 m	3.00	U	6			Loose grey sity SAND,		
		4.00	SPT	N=3 (1.0,1.0,1,1)	4.50		Firm brown PEAT		
		5.00 5.00	SPT B	N+9 (1.1,2,2,2,3)		2, 6, 8 3, 3, 3 4, 3, 3 5, 5, 5 4, 3, 3 5, 5, 5 4, 5, 5 5, 5 5			5
		6.50	U	5	630		Soft grey silty peaky CLAY.		
	Age A	8.00	SPT	Ned (1.0.1,1,1,1)		a for a formation of a behavior of the formation of the formation of the formation of the formation of the formation			8
	80 m	9.50 epth (m);	U	5 Results					-9
emar			. ,,,,,,,			Ke D- B- ES	y: Small deluted sample Buk distuted sample - Standard Penetration Test (sold so - Standard Penetration Test (sold so	W - Water sample U - Undisturbed sample TCR - Total Core Recovery	AGS

Geot	Cat Cata	igue :	029 208 029 208	a 7 Beridau Way usiness Park F83 2AX 07991 I82178 Japolec.com	Project Mach			otel		Project No.: 9811	Borehole N BH5 Sheet 2 of	;
ocati Janeli					Client:	Ма	chynys	Home	8	Coordinates :	Hole Type Cable	
quipment : Dando 2000					Diamete	r of	Casing	150 mr	n	Level : -	Scale : 1:50	
iamete	er of Bo	xing : 150	mm		Depth o	r Ca	sing :	20.50	nBGL	Dates 11/07/2008 - 14/07/2008	Logged By M.B	:
/ell	Water Strikes	Samp Depth (m)	es & I	n-situ Testing Results	De	pth n}	Level (m AOD	Legend	5	tratum Description		- 10
		11.00	SPT	N=1 (0,0.1.0,0,	0)				Soft grey sifty peaty CLAY.			1
												-12
		12.60	SPT	N+0 (0,0.0.0.0,		.70			Loose grey sity SAND.			-13
		14.00	SPT	N=1 (0.0.0.1.0	a)							-14
		15.50	SPT	N+2 (0,0,0,1,0	.1)							-15
		17.00	SPT	N=10 (1.2.2.2.3	5,3)							17
		18.50	SPT	N=12 (1.0.2.3.)	141							- 18
		Depth (m	Туре	Result	t	9.80			Key :	Continued next sheet)		20
(em)	arks :								D - Small disturbed sample B - Bulk disturbed sample ES - Environmental soil sample SPT - Standard Penetration Test (s CPT - Standard Penetration Test (s	W - Water skriple U - Undisturbed sam TCR - Total Core Rec plr.spoon/SCR - Solid Core Rec old core! ROD - Rock Quality I		GS,

Raile			Astenati Astenativ el 029 20 ast 029 2	ome, 7 Beddau Way Businoss Park CF83 2AX 3607001 0362176 91990000c.com			lame nys l	Hotel		Project No.: 9811	Borehole BH Sheet 3 o	
Loca					Clie	ent: M	achyny	/s Home		Coordinates :	Hole Type : Cable	
Equipr	ment : Da	ndo 2000	0		Diar	neter of	f Casing	: 150 m		Level : -	Scale : 1:50	
	-	ring : 150				lh of Ca	ising :	20.50	BGL	Dates 11/07/2008 - 14/07/2008	Logged By M.B	
Well	Water Strikes	Samp Depth (m)	vies &	In-situ Testing Results		Depth (m)	Level) Legend		atum Description		
		20.00 20.00	SPT B	N=64 (13, 14, 15, 16,	16,17)	20.50	1		Stiff silly sandy gravely cobbi Chiselling 2hr from 20.1m			
									Ed d	Boahoa ei 20 30 m		
					and the state of the	ميديدين الميمينية بمناكبته بمناعد						
					ا بنده بده بعد ا	والموجود ومروا						
		3th (m) T	ype	Results	t			Ke				
Remark	KS :							D - B - ES	mail disturbed sample uik disturbed sample Environmental soli sample Standard Penetration Test (solid con Standard Penetration Test (solid con	W - Water sample U - Undistanced sample TCR - Total Core Recovery	AGS	

Report No H1003-11

Machynys Mound, Machynys

Factual Report on Ground Investigation

Carried out for:


Carmarthenshire County Council

Engineer:

Ove Arup & Partners

March 2011

Soil Mechanics Unit 15, Crosby Yard, Wildmill, Bridgend, Mid Glamorgan, CF31 1JZ, UK Tel: +44 (0) 1656 646588 Fax: +44 (0) 1656 646606 email: sm.bridgend@esgl.co.uk

Soil Mechanics part of Environmental Scientifics Group

MACHYNYS MOUND, MACHYNYS FACTUAL REPORT ON GROUND INVESTIGATION

Report No: Date:	H1003-11 March 2011			
Employer:	\langle	$\left(\begin{array}{c} \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	\checkmark	Engineer:
Carmarthen Technical Se Parc Myrddi Block 6, Richmond T Carmarthen SA31 1HQ	n,	Council		Ove Arup & Partners 4 Pierhead Street, Capital Waterside, Cardiff CF10 4QP

Issue No	Date	Details
1	March 2011	Draft Factual Report

The title to this report is vested in the Employer named but title to copyright is retained. The Contracts (Rights of Third Parties) Act 1999 does not apply to the contract with the Employer and the provisions of the said Act are hereby excluded.

CONTENTS

		Page
1	INTRODUCTION	2
2	THE SITE AND GEOLOGY2.1The Site2.2Published Geology	2
3	FIELDWORK 3.1 General 3.2 Exploratory Holes 3.3 Instrumentation and Monitoring	3
4	LABORATORY TESTING 4.1 Geotechnical Testing 4.2 Geoenvironmental Testing	4
	REFERENCES	6
	ENCLOSURES A EXPLORATORY HOLE RECORDS B INSTRUMENTATION AND MONITORING C GEOTECHNICAL LABORATORY TEST RESULTS D GEOENVIRONMENTAL LABORATORY TEST RESULTS E PHOTOGRAPHS F DRAWINGS	

 \checkmark

1 INTRODUCTION

During January 2011 Soil Mechanics (SM) were commissioned by Carmarthenshire County Council (CCC), to carry out a ground investigation at Machynys Mound, Llanelli. The investigation was required to obtain geotechnical and geoenvironmental information for future development of the site.

The scope of the investigation, which was specified by Ove Arup & Partners (Arup), comprised cable percussion boreholes, trial pits, in situ testing and laboratory testing. The investigation was carried out in accordance with the contract specification and relevant standards (see References). The fieldwork was carried out between 20th January and 8th February 2011.

This report presents the factual records of the fieldwork and laboratory testing. The data is also presented separately in digital format following AØS (2005).

A previous investigation had been carried out by Thyssen Seotechnical (7414/8055, June 1992). A partial copy of their report comprising borehole and trial pit logs was made available to SM by Arup at the outset of the current investigation.

2 THE SITE AND GEOLOGY

2.1 The Site

The site is situated on the southern side of the B4304 road, approximately 2km south of Llanelli town centre, see Site Location Plan in Enclosure F. The centre of the site is at National Grid reference SS 508 982.

The site is bounded to the north by the B4304 road, to the west by an unnamed road, to the south by residential properties and to the east by grassland.

The site is divided into two main areas of investigation. To the north the site comprises a relatively level brownfield area. The south of the site comprises an elevated unmanaged grassed area. Based on information supplied by Arup the site has had several uses in the past including a residential area, reservoirs and brick works.

2.2 Published Geology

The published geological map covering the site, GS Sheet 247 (1972) shows the superficial deposits to comprise Marine or Estuarine Alluvium.

The solid geology is indicated to comprise of interbedded sandstones, mudstones and coal seams of the Hughes Beds, Upper Coal Measures of Carboniferous age.

The north – south trending Box Fault is located approximately 700m to the east of the site and intersects the Swansea Two Feet coal seam.

3 FIELDWORK

3.1 General

The fieldwork was carried out in general accordance with BS EN 1997-2 (2007) and its related standards together with the relevant section of BS 5930 (1999).

The exploratory hole locations were selected by Arup. The locations were set out from local features. The co-ordinates and reduced levels were surveyed by John Vincent Survey to National Grid and Ordnance Datum. The exploratory hole locations are shown on the Exploratory Hole Location Plan in Enclosure F.

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

SUMMARY OF EXPLORATORY HOLES

ТҮРЕ	QUANTITY	MAXIMUM DEPTH (m)	REMARKS
Cable Percussion Boring	2	8.00	Designated BH1 and 2
Trial Pits (Machine Excavated)	10	4.50	Designated TP1 to 10

The exploratory hole records are presented in Enclosure A and should be read in conjunction with the Key included therein. The records provide descriptions of the materials encountered, in accordance with the standards referenced on the Key, details of the samples taken, together with

observations made during boring and pitting. Photographs of the trial pits are presented in Enclosure E.

On completion of the fieldwork all geotechnical samples were transported to the Bridgend laboratory of Soil Mechanics for temporary retention and testing. Geoenvironmental samples were transported directly from site to the Scientifics laboratory in Burton on Trent.

3.3 Instrumentation and Monitoring

The instruments installed in the exploratory holes are shown on the logs and detailed in Enclosure B. Records of groundwater and gas monitoring carried out by SM during and after the fieldwork period are presented in Enclosure B.

Gas monitoring was carried out by measuring gas concentrations from double valved gas bungs and comprised the measurement of gas concentrations whilst they were being recycled in a closed system within the standpipe installation. In addition to gas concentrations, flow rate, differential pressure and barometric pressure were also recorded.

In situ water monitoring involved the measurement of temperature, pH value, dissolved oxygen, redox potential and conductivity during purging of the standpipes. Readings were taken at 1 well volume. On completion of the testing water samples were collected to facilitate geoenvironmental testing.

4 LABORATORY TESTING

4.1 Geotechnical Testing

The testing was scheduled by Arup and was carried out in accordance with BS 1377 (1990) unless otherwise stated. The testing is summarised below and the results are presented in Enclosure C.

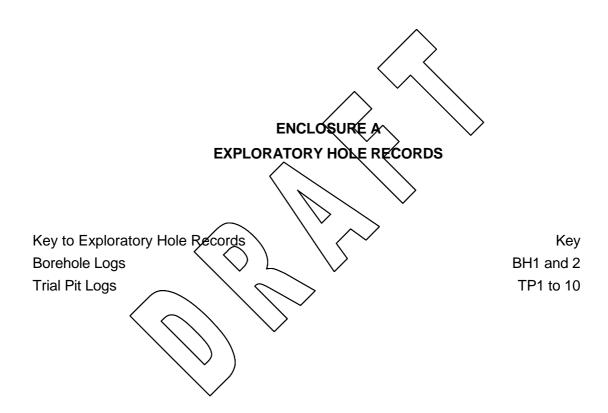
ТҮРЕ	REMARKS
Moisture Content Determination	10no.
Atterberg Limit Determination	10no.
Particle Size Distribution Analysis	5no.

SUMMARY OF GEOTECHNICAL LABORATORY TESTING

ТҮРЕ	REMARKS
Dry Density / Moisture Content Relationship, Heavy Compaction, 4.5kg Rammer	2no.
pH and Water Soluble Sulphate Content of Soils	10no.
Organic Matter content	3no.

4.2 Geoenvironmental Testing

The testing was scheduled by Arup and was carried out by Scientifics at their Burton on Trent laboratory. The results are presented in Enclosure D.


Prepared By	Aled Henry BSc. FGS
Reviewed By	Andrew Figgis BSc.
Approved for Issue By	

REFERENCES

- AGS : 2005 : Electronic transfer of geotechnical and geoenvironmental data (Edition 3.1 including addendum May 2005). Association of Geotechnical and Geoenvironmental Specialists.
- BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.
- BS 5930 : 1999 : Code of practice for site investigations. British Standards Institution.
- BS EN ISO 1997-2 : 2007 : Eurocode 7 Geotechnical design Part 2 Ground investigation and testing. British Standards Institution.
- GS England and Wales Sheet 247 : 1972 : Swansea. 1:63360 geological map (drift). Geological Survey of Great Britain

Key to Exploratory Hole Records

SAMPLES

lot	es:	Project Machynys Mound, Machynys
	·	
	$\mathbf{\nabla}$	Groundwater strike Groundwater level after standing period
	GROUNDWATER	
	AZCL NR	Assessed zone of core loss Not recovered
	CRF	Core recovered (length in m) in the following run
	Flush returns, estima	non-intact (NI) is used where the core is fragmented. ted percentage with colour where relevant, are given in the Records column
	TCR SCR RQD If	Total Core Recovery, % Solid Core Recovery, % Rock Quality Designation, % Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term
		res (TCR/SCR/RQD & If) are defined in BS 5930 with Amendment 1(1999/2007)
	DRILLING RECORD	S
	IV HV PP KFH, KRH, KPI	<i>in situ</i> Vane shear strength, peak (p) and remoulded (r) Hand vane shear strength, peak (p) and remoulded (r) Pocket penetrometer test, converted to shear strength Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow); results provided in Field Records column (one value per stage for packer tests)
		The Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as $N = **$ in the Test column. Where the test drive blows reach 50 the total blow count beyond the seating drive is given (without the N = prefix).
	SPT S or SPT C	Standard Penetration Test, open shoe (S) or solid cone (C)
	TESTS	
		Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs.
	Comments	Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that attempt was made to take a tube sample, however, there was no recovery.
	ES EW	Environmental chemistry samples (in more than one container where appropriate) Soil sample Water sample
	Other W G	Water sample Gas sample
	Disturbed D B	Small sample Bulk sample
	CBR BLK CS AMAL	CBR mould sample Block sample Core sample (from rotary core) taken for laboratory testing Amalgamated sample
	TW P L	Pushed thin wall tube sample Pushed piston sample Liner sample (from Windowless or similar sampler), full recovery unless otherwise stated
	Undisturbed ∪	Driven tube sample
	SAMI LES	

Notes:	Project	Machynys Mound, Machynys	
	Project No.	H1003-11	Key
	Carried out for	Carmarthenshire County Council	Sheet 1 of 3

Key to Exploratory Hole Records

INSTALLATION

INSTALLATION Standpipe/	Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument
piezometer	depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.
SP SPIE PPIE EPIE	The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone: Standpipe Standpipe piezometer Pneumatic piezometer Electronic piezometer
Inclinometer or Slip Indicator	The installation of vertical profiling instruments is indicated on the Record. The base of tubing is shown in the Legend column.
ICE ICM SLIP	The type of instrument installed is indicated by a code in the Legend column at the base of the tubing: Biaxial inclinometer Inclinometer tubing for use with probe Slip indicator
Settlement Points or Pressure Cells	The installation of single point instruments is indicated on the Record. The location of the measuring device is shown in the Legend column.
ESET ETM EPCE PPCE	The type of instrument installed is indicated by a code in the Legend column: Electronic settlement cell/gauge Magnetic extensometer settlement point Electronic embedment pressure cell Electronic push in pressure cell
INSTALLATION LEGENDS	A legend describing the installation is shown in the rightmost column. Legends additional to BS5930 are used to describe the backfill materials as indicated below.
	Arisings Concrete Grout Bentonite Sand Gravel Macadam Image:
NOTES 1	Soils and rocks are described in accordance with BS EN ISO 14688-1 (2002), 14688-2 (2004), 14689-1 (2003) and BS 5930 with Amendment 1 (1999/2007) as clarified by Baldwin et al (2007).
2	Strata legends are in accordance with BS 5930 with Amendment 1 (1999/2007).
3	Water level observations of discernible entries during the advancing of the exploratory hole are given at the foot of the log and in the Legend column. The term "none observed" is used where no discrete entries are identified although this does not necessarily indicate that the hole has not been advanced below groundwater level. Under certain conditions groundwater cannot be observed, for instance, drilling with water flush or overwater, or boring at a rate much faster than water can make its way into the borehole (ref BS5930 : 1999, Clause 47.2.7). In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.
4	Evidence of the occurrence of very coarse particles (cobbles and boulders) is presented on the logs, however, because of their size in relation to the exploratory hole these records may not be fully representative of their size and frequency in the ground mass.
5	The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass conditions.
6	The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this will be the dip.
7	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures
Notes:	Project Machynys Mound, Machynys
	Project No. H1003-11 Carried out for Carmarthenshire County Council Sheet 2 of 2

REFERENCES

- Baldwin M, Gosling R C and Brownlie N : 2007 : Soil and rock descriptions a practical guide to the implementation of BS EN ISO 14688 and 14689. Ground Engineering, Vol 40 No 7 July.
- BS EN ISO 14688-1 : 2002 : Geotechnical investigation and testing Identification and classification of soil Part 1 Identification and description. British Standards Institution.
- BS EN ISO 14688-2 : 2004 : Geotechnical investigation and testing Identification and classification of soil Part 2 Principles for a classification. British Standards Institution.
- BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing Identification and classification of rock Part 1 Identification and description. British Standards Institution.
- BS EN ISO 22476-3 : 2005 : Geotechnical investigation and testing Field testing Part 3 Standard penetration test. British Standards Institution.

BS 5930 with Amendment 1 : 1999/2007 : Code of Practice for site investigations. British Standards Institution

Updated July 2009

Notes:	Project	Machynys Mound, Machynys	
	Project No.	H1003-11	Key
	Carried out for	Carmarthenshire County Council	Shoot 3 of 3

PRELIMINARY

Borehole Log

	RB AH	Start 02/02/2011 End 04/02/2011	Equipment, Methods an Dando 2000 Inspection pit excavated to 1.20 - 8.00m. Terminated	by hand GL - 1	1.20m. Li s instructi	t cable percussion boring on.	Ground Level Coordinates National Grid Chainage	+6.18 mC E 250920.0 N 198255.4
Samn	les :	and Tests				Strata		
Depth		Type & No	Records	Date	Time	Description	Depth, Level	Legend
0.20-0 0.30	0	B 1 ES 2 ES 3		Casing 02/04/2011	Water 1200	MADE GROUND: Brown clayey sandy angular to subrounded fine to coarse GRAVEL of sandstone and occasional fragments of brick and concrete with medium cobble content. Cobbles are subangular to subrounded of sandstone and	(Thickness) (0.80) (0.80)	Provide the second seco
0.90-1 1.00 1.20-1 1.20 1.20-1	0 1.65 0	B 4 ES 5 SPT C ES 6 B 7	• N=4 (1,2/1,1,1,1)		dry	MADE GROUND: Very loose to loose black to dark grey silty sandy angular to subangular fine to coarse ashy GRAVEL of clinker and occasional fragments of sandstone, slag, brick and concrete with low cobble content. Cobbles are subangular of slag and brick.	0.80 +5.3 (1.20)	
- 2.00-2 2.00 2.00-2 2.50-2	0 2.50	SPT C ES 8 B 9 B 10	N=6 (2,2/1,2,2,1)	2.00 02/04/2011 2.50	dry	MADE GROUND: Loose dark grey to dark brown clayey sandy subangular to subrounded fine to coarse GRAVEL of sandstone with medium cobble content. Cobbles are subangular of sandstone.	2.00 +4.10 (0.70)	
2.70-3 - 3.00 3.00-3 3.00-3	0 3.50	B 11 ES 12 B 13 U NR	10 blows No recovery	04/02/2011 2.50 3.00	0800 dry dry	Firm dark grey slightly sandy locally sandy slightly organic CLAY.	2.70 +3.4 - - (0.80)	
3.50-4		U 14 D 15	15 blows 450 mm rec	3.50	2.50	Soft locally firm grey brown slightly sandy CLAY.	3.50 +2.6	
4.50-4 4.50-4 4.50-5	4.95	SPT S D 16 B 17	N=4 (1,1/1,1,1,1)	4.50	3.00		(1.50) 	
- 5.00-5		U 18 D 19	10 blows 450 mm rec	5.00	3.00	Soft grey green slightly sandy slightly gravelly CLAY grading to amorphous PEAT. Gravel is subangular to subrounded of sandstone.	$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	
5.60-6 5.60-6 5.60-6 - 6.10-6	6.05 6.10	SPT S D 20 B 21 U 22	N=5 (1,2/1,2,1,1) 45 blows 225 mm rec	5.60 6.10	3.50 4.50	Soft dark brown pseudo-fibrous PEAT. 6.00-6.10 m Very stiff locally stiff brown slightly Becoming clayey	- (0.60) - (0.60) - 6.10 +0.00	
6.60-6 6.70-7 6.70-7	7.15	D 23 SPT C B 24	N=34 (5,5/6,7,9,12)	6.70	4.50	Very stiff, locally stiff brown slightly sandy gravelly CLAY with medium cobble content. Gravel is subangular to subrounded fine to coarse of sandstone.		
7.20-7 7.20-7		SPT C B 25	N=29 (9,9/6,7,8,8)	7.20	4.50		(1.90) 	
	3.45	SPT-C	N=45 (10,10/7,11,16;11) −	04/02/2011 8.00 8.00	1700 4.50 	EXPLORATORY HOLE ENDS AT 8.00 m	8.00 -1.8	2 <u> </u>
Depti		Type & No	Records	Date Casing	Time Water			
Groundwa No. Stru (m 1 3.0	uck F n)	Post strike behav	i our after 20 minutes.	Depth sea	aled (m) 3.50	Depth Related Remarks * From to (m) 1.20 8.00 SPT Hammer ID: SM09 (1.5" Whitworth rods)	6.70 -7.20 7.20 -7.40	Tools used 60 mins Chisel 60 mins Chisel 60 mins Chisel 60 mins Chisel
bbreviation	ns see k etres. St umn.	tion of symbols ar key sheet. All dept ratum thickness g (c) E	ths and reduced	Project Project No. Carried out		Machynys Mound, Machynys H1003-11 Carmarthenshire County Council		BH1 neet 1 of 1

PRELIMINARY

Borehole Log

Drilled RB Logged AH Checked	Start 07/02/2011 End 08/02/2011	Equipment, Methods and Dando 2000 Inspection pit excavated b 1.20 - 7.00m. Terminated	y hand GL -		ght cable percussion boring on boring	Ground Level Coordinates National Grid Chainage	+7.22 mOE E 250841.47 N 198355.46
Samples a	nd Tests	• ·			Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, <i>Level</i> (Thickness)	Legend Backfil
0.30 0.40-0.70 0.60 	ES 1 B2 ES 3 ES 4 SPT C B 5	N=22 (4,5/4,7,7,4)	07/02/2011	1200 damp	MADE GROUND: Medium dense brown silty sandy subangular to rounded fine to coarse GRAVEL of sandstone with medium cobble content. Cobbles are subrounded of sandstone.	(2.00)	
1.50 - 2.00-2.45 2.00 2.00-2.50	ES 6 SPT C ES 7 B 8	N=27 (4,6/5,13,5,4)	2.00	1.00	MADE GROUND: Medium dense dark grey silty sandy angular to subrounded fine to coarse GRAVEL of sandstone and slag with occasional fragments of brick and concrete with medium cobble content. Cobbles are angular to subangular of sandstone and slag.	2.00 +5.22 (1.00)	
3.00-3.45 3.00-3.50 3.00 3.00-3.45	SPT S B 10 ES 11 D 9	N=4 (1,1/1,1,1,1)	3.00	2.00	Very soft to soft dark grey slightly sandy slightly gravelly silty CLAY. Gravel is subangular to subrounded of sandstone.	3.00 +4.22 (1.00)	× × × × × × × × × × × × × × × × × × ×
- 4.00-4.45 4.00-4.45 4.00-4.50 4.00	SPT S D 12 B 13 ES 14	N=3 (1,1/1,1,1,0)	4.00 -4.00 08/02/2011 4.00	2.00 2.00 0800 2.50	Very loose brown silty fine to coarse SAND.	4.00 +3.22 (0.50) 4.50 +2.72	
- 5.00-5.45 5.00-5.50	SPT S B 15	N=30 (7,3/4,7,9,10)	5.00	3.00	Dense locally very dense dark brown clayey sandy subangular to subrounded fine to coarse GRAVEL of sandstone with medium to high cobble content. Cobbles are subangular to subrounded of sandstone.		
- 6.50-6.89 7:00-7.45	SPT C S PT - C	52 (6,5/11,15,20,6 for 10mm) N=37 (10;12/8;10;9;10)	6.50 08/02/2011 7.00 -7.00	4.00 1700 4.50 	6.50-6.89 m very dense EXPLORATORY HOLE ENDS AT 7.00 m	(2.50) 7.00 +0.22	
			Date	Time			
Depth Groundwater Entr Io. Struck Po (m) None observed (ost strike behav		Date Casing Depth sea	Water	Depth Related Remarks * From to (m) 1.00 8.00 SPT Hammer ID: SM09 (1.5" Whitworth rods)	1.30 -1.45 2.30 -2.80 2.80 -3.00 5.00 -5.50 5.50 -6.00	Time Tools used 30 mins Chisel 30 mins Chisel 30 mins Chisel 30 mins Chisel 50 mins Chisel 50 mins Chisel
otes: For explanations see ke vels in metres. Stra depth column. cale 1:50	ey sheet. All dep atum thickness ((c) B	nd ths and reduced given in brackets ESGL www.esgl.co.uk	Project Project No. Carried out		Machynys Mound, Machynys H1003-11 Carmarthenshire County Council		BH2 neet 1 of 1

PRELIMINARY

Trial Pit Log

Soil Mechanics

Logged AH Checked	Start 20/01/2011 End 20/01/2011	Equipment, Methods JCB 3CX Machine excavated tri engineer's instruction.	al pit GL - 3.90m. Terminated on	Dimensions and Orientation Width 0.80 m P B I 100 (Deg	Ground Level Coordinates National Grid Chainage	+10.08 mO E 250636.7 N 198229.3
Samples a	nd Tests		Strata			
Depth	Type & No.	Date Records		scription	Depth, Level (Thickness)	Legend Backfil
0.10-0.30 0.20 0.50	B 1 ES 2 ES 3		1 MADE GROUND: Firm dark brown sli with low cobble content. Gravel is angu fine to coarse of sandstone and mudsto subangular of sandstone. 2 MADE GROUND: Reddish brown loc ashy angular to subangular fine to coar clinker, brick and sandstone with occas metal and medium cobble content. Cob subangular of slag and sandstone.	lar to subrounded for a compared of the subrounded of the subrounded of the subrounded of the subround of the	(0.40) 0.40 +9.68	
- 1.00-1.30 1.00	B 4 ES 5			-	(1.50)	
- 2.00	ES 6		3 MADE GROUND: Dark brown locally brown silty sandy angular to subrounde GRAVEL of sandstone, slag, clinker an cobble content. Cobbles are angular to sandstone, slag and brick.	d fine to coarse ashy	- - 1.90 +8.18 - -	
2.40-2.70	Β7				- (2.00)	
- 3.00	ES 8			-	-	
3.50-3.80	B 9				-	
			EXPLORATORY HOLE ENDS A	T 2 00	- 3.90 +6.18	XX
Depth	Type & No.	Records				
Groundwater Entrie No. Struck Post Str (m) None observed (se	es ike Behaviour	Date	Depth Related Remarks * From to (m)		Stability Stat Shoring Non Weather Dry	
Notes: For explanations see ker abbreviations see ker evels in metres. Stra n depth column. Scale 1:25	ey sheet. All dep atum thickness g	ths and reduced	Project Machynys Mound, Mach Project No. H1003-11 Carried out for Carmarthenshire County			TP1 eet 1 of 1

Soil Mechanics

Logged AH Checked	Start 21/01/2011 End 21/01/2011	Equipment, Methods JCB 3CX Machine excavated tr engineer's instruction.	rial pit GL - 4.40m. Terminated on Width 0.60 m			+15.10 mOl E 250750.6 N 198191.8	
Samples and Tests			Strata	-			
Depth	Type & No.	Date Records	Description			Legend Backfill	
0.10-0.40 0.20 0.30	B 1 ES 2 D 3		1 Firm dark brown slightly sandy slightl low cobble content. Gravel is subangul to coarse of sandstone. Cobbles are su	ar to subrounded fine	(Thickness) (0.40) - 0.40		
0.50	ES 4		2 Firm orange brown and brown sandy with low cobble content. Gravel is suba fine to coarse of sandstone. Cobbles a sandstone.	ingular to subrounded	0.40 +14.70 		
- 1.00 1.10-1.40	ES 5 B 6				- - - - -		
- 2.00	D 7		3 Brown silty very gravelly fine to coars cobble content. Gravel is subangular to coarse of sandstone. Cobbles are subr	subrounded fine to	- - - - - - -		
2.60-2.90	Β8				-		
					- (2.30) 		
3.90-4.20	B 9				- - - - - 4.40 +10.70		
			EXPLORATORY HOLE ENDS A	λΤ 4.40 m			
Depth	Type & No.	Records Date			_		
Groundwater Entries No. Struck Post Strike Behaviour		Dale	Depth Related Remarks *		Stability Stable.		
lo. Struck Post Stri (m) None observed (se			From to (m)		Shoring Non Weather Dry		
otes: For explanations see ke vels in metres. Stra depth column. cale 1:25	y sheet. All dep atum thickness g	ths and reduced	Project Machynys Mound, Mach Project No. H1003-11 Carried out for Carmarthenshire County			TP2 eet 1 of 1	

Soil Mechanics

Logged AH Checked	Start 21/01/2011 End 21/01/2011	Equipment, Methods JCB 3CX Machine excavated tri engineer's instruction.	al pit GL - 4.30m. Terminated on	Ground Level Coordinates National Grid Chainage	+13.38 mOD E 250804.02 N 198195.30	
Samples and Tests			Strata	-		
Depth	Type & No.	Date Description				Legend Backfill/ Instrume
- 0.30 0.30-0.50 - 0.50 - 0.50 - 1.00 - 1.20 - 1		Records	2 Firm orange brown slightly sandy grav cobble content. Gravel is subangular to cobble content. Gravel is subangular to coarse of sandstone. Cobbles are subro 3 Brown silty sandy subrounded to roun GRAVEL of sandstone with high cobble subrounded of sandstone.	1 Firm dark brown slightly sandy gravelly CLAY with low coble content. Gravel is subangular to subrounded fine to coarse of sandstone. Cobbles are subrounded of sandstone. 2 Firm orange brown slightly sandy gravelly CLAY with medium coble content. Gravel is subangular to subrounded fine to coarse of sandstone. Cobbles are subrounded of sandstone. 3 Brown silty sandy subrounded to rounded fine to coarse GRAVEL of sandstone with high cobble content. Cobbles are subrounded of sandstone.		
_			EXPLORATORY HOLE ENDS A	T 4.30 m	- 4.30 +9 <i>.08</i> -	
Depth Groundwater Entrin No. Struck Post Str (m) None observed (se	rike Behaviour	Records Date	Depth Related Remarks * From to (m)		Stability Stat	e
Notes: For explanati abbreviations see ke evels in metres. Stra n depth column. Scale 1:25	ey sheet. All dep atum thickness g	ths and reduced	Project Machynys Mound, Machy Project No. H1003-11 Carried out for Carmarthenshire County			TP3 eet 1 of 1

Soil Mechanics

Logged AH Checked	Start 21/01/2001 End 21/01/2011	Equipment, Methods JCB 3CX Machine excavated tri engineer's instruction.	al pit GL - 4.30m. Terminated on	g) Ground Level Coordinates National Grid Chainage	+6.63 mOl E 250921.0 N 198178.4	
Samples and Tests			Strata			
Depth	Type & No.	Date Records	Des	cription	Depth, Level (Thickness)	Legend Backfill Instrum
0.20 0.30-0.60 0.50	ES 1 B 2 ES 3		1 MADE GROUND: Brown silty locally c subangular fine to coarse GRAVEL of si brick and concrete with occasional fragr metal and glass. Low cobble content. C subrounded of sandstone and brick.	andstone, mudstone, nents of plastic,	- - - - - - (0.90)	
- 1.00 1.00-1.30	ES 4 B 5		2 MADE GROUND: Black silty sandy an to coarse GRAVEL of clinker, slag and t cobble content. Cobbles are angular to concrete and sandstone.	prick with medium	- - - - - - - (0.50) -	3
1.80-2.10	В 6		3 MADE GROUND: Dark brown silty sar subangular fine to coarse GRAVEL of b concrete with medium cobble content. C subangular of brick and sandstone.	rick, sandstone and	- 1.40 +5.2. - - -	
1.00-2.10					(0.90)	
- 2.00	ES 7		4 Light brown grey clayey sandy subang to coarse GRAVEL of sandstone.	gular to rounded fine 2.50-4.30 m Strong	- - - 2.30 +4.3 -	
2.70-3.00	B 8			hydrocarbons.	-	
3.00 - - - - -	ES 9					
3.90-4.20 - 4.00	B 11 ES 10				- - - - - 4.30 +2.3	
			EXPLORATORY HOLE ENDS A		-	
Depth	Type & No.	Records Date				
Groundwater Entrie Io. Struck Post Stri (m) 1 2.40 Seepage	ke Behaviour		Depth Related Remarks * From to (m)			
lotes: For explanations see ke evels in metres. Stra in depth column. Scale 1:25	y sheet. All dep itum thickness g	ths and reduced	Project Machynys Mound, Machy Project No. H1003-11 Carried out for Carmarthenshire County			TP4 neet 1 of 1

Logged AH Checked	Start 21/01/2011 End 21/01/2011	Equipment, Methods JCB 3CX Machine excavated tr engineer's instruction	al pit GL - 4.50m. Terminated on Width 0.75 m		g) Ground Level Coordinates National Grid Chainage	+6.28 mOD E 250925.35 N 198224.17
Samples a	nd Tests		Strata			
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend Backfill/ Instrume
0.30 0.50-0.80 0.60	ES 1 B 2 ES 3		1 MADE GROUND: Dark brown very sitty subrounded fine to coarse GRAVEL of si concrete with occasional fragments of gl plastic with medium cobble content and I Cobbles are angular to subangular of bri concrete. Boulders are angular of concre 210mm).	andstone, brick and ass, metal and ow boulder content. ck, sandstone and	- - - - - - - - - - - - - - - -	
- 1.00	ES 4		2 MADE GROUND: Black silty sandy and to coarse ashy GRAVEL of clinker and si content. Cobbles are angular to subangu	ag with low cobble	- - - 1.20 +5.00 - -	
1.70-2.00	B 5				- - (1.00) -	
- 2.00	ES 6		3 MADE GROUND: Brown grey silty san	- dv angular to subangular	- - 2.20 +4.00	
2.40-2.70 2.50	B 7 ES 8		fine to coarse GRAVEL of sandstone, bri high cobble content. Cobbles are angula concrete.	ck and concrete with	- - - - - (0.70)	
			4 Soft to firm light grey slightly sandy slig silty organic CLAY. Gravel is subangular to coarse of sandstone.	htly gravelly to subrounded fine	- - 2.90 +3.34 - -	
3.30-3.60	В9				-	
3.50	D 10				- - - (1.60) -	
4.00-4.30	B 11			-	_	
4.20	D 12				-	
			EXPLORATORY HOLE ENDS AT	4.50 m	- 4.50 +1.78 - -	3
Donth		Records				
Depth roundwater Entrie	Type & No.	Date	Depth Related Remarks *			
ounowater Entrie o. Struck Post Str (m) 1 2.10 Slow ing	ike Behaviour		From to (m)		Stability Sta Shoring Nor Weather Dry	ne
otes: For explanations see ke vels in metres. Stra depth column. cale 1:25	ey sheet. All dep atum thickness g	ths and reduced	Project Machynys Mound, Machyn Project No. H1003-11 Carried out for Carmarthenshire County (TP5 eet 1 of 1

ØĎ
Soil Mechanics

Logged AH	Start 20/01/2011	Equipment, Methods a JCB 3CX		Dimensions and Orientation	A	Ground Level Coordinates National Grid	+6.84 mO E 250887.5
Checked	End 20/01/2011	Machine excavated tria engineer's instruction.	I pit GL - 4.50m. Terminated on	Length 3.65 m D B → 150 (Deg)			N 198291.6
Samples a	nd Tests		Strata				1 1
Depth	Type & No.	Date Records		scription		Depth, Level (Thickness)	Legend Backfil Instrum
		1300	1 MADE GROUND: Brown silty sandy fine to coarse GRAVEL of sandstone v cobble content. Cobbles are subround	ith medium to high	1	-	
0.30	ES 1					_	
0.50-0.80	B 2					-	
0.60	ES 3					- - (1.40) -	
- 1.00	ES 4					-	
						-	
1.40-1.70 1.50	B 5 ES 6		2 MADE GROUND: Dark brown locally to subrounded fine to coarse GRAVEL brick and occasional fragments of plas cobble content and many rootlets. Cob subangular of sandstone.	of sandstone, mudstone, tic and metal with low	ar		
- 2.00-2.30	Β7		3 Stiff grey locally orange brown slight gravelly CLAY. Gravel is subangular to coarse of sandstone.	y sandy slightly subrounded fine to		1.80 +5.04 	
2.50	D 8					-	
3.00-3.30	В9					 (2.70)	
- 4.00-4.30 4.00	B 10 D 11				3.90-4.50 m Dark brown		
		20/01/2011 1430 damp	EXPLORATORY HOLE ENDS	AT 4.50 m		- 4.50 +2.34 -	4
						-	
Depth	Type & No.	Records				_	
iroundwater Entri lo. Struck Post Str (m) 1 1.80 Slow in	es ike Behaviour	Date	Depth Related Remarks * From to (m)			Stability Stal	
						Shoring Nor Weather Dry	
otes: For explanati obreviations see ke vels in metres. Stra depth column.	ey sheet. All dep atum thickness g	nd ths and reduced jiven in brackets SGL www.esgl.co.uk	Project Machynys Mound, Mach Project No. H1003-11 Carried out for Carmarthenshire Count			Trial Pit	TP6

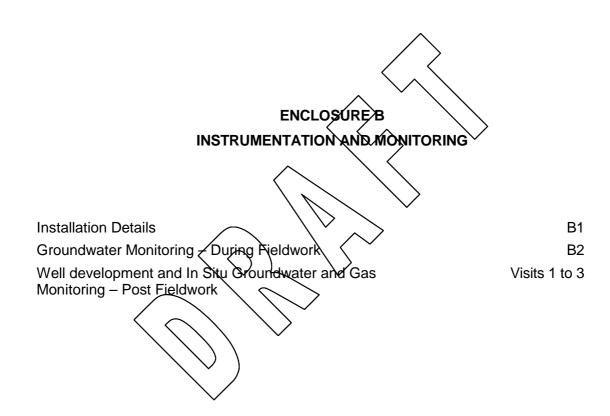
ØD
Soil Mechanics

Logged AH Checked	Start 20/01/2011 End 20/01/2011	Equipment, Methods JCB 3CX Machine excavated to engineer's instruction	trial pit GL - 4.40m. Terminated on Width 0.70 m			+7.24 mO E 250863.3 N 198324.6
Samples a	nd Tests		Strata			
Depth Type & No. Date Records				Description		Legend Backfil Instrum
0.30 0.30-0.60 0.50	ES 1 B 2 ES 3		1 MADE GROUND: Brown clayey v fine to coarse GRAVEL of sandstor content. Cobbles are subangular to	ne with low to medium cobble	-	
- 1.00 1.10-1.40	ES 4 B 5				(1.70) 	
- 2.00	ES 6		2 MADE GROUND: Soft to firm dar slightly sandy gravelly CLAY with m cobble content. Gravel is angular to coarse of sandstone, mudstone, bri fragments of plastic and metal. Cob subangular of sandstone and brick.	nany rootlets and medium o subangular fine to ick and occasional obles are angular to		
2.40-2.70	В 7				- - - - -	
			3 Firm locally stiff dark grey slightly gravelly CLAY. Gravel is subangula coarse of sandstone.	sandy slightly ar to subrounded fine to		
3.60-3.90 4.10	B 8				- - - (1.20) -	
4.10	9				- - 4.40 +2.84	
			EXPLORATORY HOLE EN	DS AT 4.40 m		
Depth	Type & No.	Records Date				
roundwater Entric o. Struck Post Str (m) 1 1.80 Slow inf	ike Behaviour	Date	Depth Related Remarks * From to (m)		StabilityColl 1.60ShoringNonWeatherDry	e
otes: For explanati obreviations see ke vels in metres. Stra depth column. cale 1:25	ey sheet. All dept atum thickness g	nd ihs and reduced jiven in brackets SGL www.esgl.co.uk 24 15/03/2011 15:27:54	Project Machynys Mound, M Project No. H1003-11 Carried out for Carmarthenshire Co			TP7 eet 1 of 1

ØĎ
Soil Mechanics

Logged AH Checked	Start 21/01/2011 End 21/01/2011	Equipment, Methods JCB 3CX Machine excavated tr engineer's instruction	ial pit GL - 4.50m. Terminated on	Dimensions and Orientation Width 0.70 m A Length 3.65 m C B ➡ 220 (Dec	Ground Level Coordinates National Grid Chainage	+5.25 mOE E 250989.81 N 198274.60
Samples a	nd Tests		Strata			
Depth	Type & No.	Date Records	Des	cription	Depth, Level (Thickness)	Legend Backfill
0.20 0.50 0.80-1.20 - 1.00	ES 1 ES 2 B 3 ES 4		1 MADE GROUND: Black silty sandy as fine to coarse GRAVEL of clinker.	hy angular to subangular	- - - - - - - - - - - - - - - - - - -	
1.80-2.10	В5		2 MADE GROUND: Dark grey black silt subangular fine to coarse GRAVEL of c concrete with low cobble content. Cobb	inker, slag, brick and		
- 2.00	ES 6		subangular of brick and concrete. 3 Soft to firm light grey sandy slightly gr organic CLAY. Gravel is subangular to coarse of sandstone.	- avelly slightly	- (0.40) - 2.10 +3.18 	
2.70-3.00 - 3.00	B 7 D 8			-	-	
- 4.00-4.30 4.00	B 10 D 9			-	- - (2.40) - - - - - - - - -	
			EXPLORATORY HOLE ENDS A	T 4.50 m	- - - 4.50 +0.75	
					-	
Depth	Type & No.	Records Date			1	
Groundwater Entri lo. Struck Post Str (m) 1 1.10 Fast infi	ike Behaviour		Depth Related Remarks * From to (m)		Stability Stal Shoring Nor Weather Dry	ie
lotes: For explanati bbreviations see ke evels in metres. Stra n depth column. Scale 1:25	ey sheet. All dept atum thickness g (c) E	ths and reduced	Project Machynys Mound, Machy Project No. H1003-11 Carried out for Carmarthenshire County			TP8 eet 1 of 1

ØĎ
Soil Mechanics


Logged AH Checked	Start 20/01/2011 End 20/01/2011	Equipment, Methods JCB 3CX Machine excavated tr engineer's instruction	ial pit GL - 4.40m. Terminated on	Dimensions and Orientation Width 0.70 m A Length 3.70 m C C	Ground Level Coordinates National Grid Chainage	+6.68 mO E 250927.2 N 198323.4
Samples a	nd Tests		Strata	-		
Depth	Type & No.	Date Records	De	scription	Depth, Level (Thickness)	Legend Backfi Instrum
0.30	ES 1		1 MADE GROUND: Brown silty sandy s to coarse GRAVEL of sandstone with n Cobbles are subangular of sandstone.	ubangular to rounded fine ledium cobble content.	-	
0.50-0.80 0.60	B 2 ES 3				(1.40) 	
- 1.00	ES 4			-	_ _ _ _ 1.40 +5.28	
1.50	ES 6		2 MADE GROUND: Dark brown locally angular to subrounded fine to coarse G mudstone and occasional fragments of and plastic with medium cobble conteni	RAVEL of sandstone, brick, concrete, metal	-	
1.70-2.00	Β5		subangular of brick and sandstone.		- - - - -	
			3 Firm locally stiff light grey slightly san CLAY. Gravel is subangular to subroun sandstone.	dy gravelly ded fine to coarse of	- 2.10 +4.58 - - -	
2.50	D7				-	
2.80-3.10	Β8			-	 (2.30)	
3.50	D 9				-	
3.90-4.20 -	B 10			-	-	
			EXPLORATORY HOLE ENDS A	T 4.40 m	- 4.40 +2.28 - - -	3
Donth	Type & No.	Records				
Depth Groundwater Entrie No. Struck Post Stri	es	Date	Depth Related Remarks * From to (m)		Stability Stal	ble
(m) 1 2.00 Slow inf	flow				Shoring Nor Weather Dry	
otes: For explanation bbreviations see ke vels in metres. Stra depth column. cale 1:25	ey sheet. All dep atum thickness g	ths and reduced	Project Machynys Mound, Mach Project No. H1003-11 Carried out for Carmarthenshire County			TP9 eet 1 of 1

Soil Mechanics

Logged AH Checked	Start 21/01/2011	Equipment, Methods JCB 3CX Machine excavated tr	and Remarks ial pit GL - 4.30m. Terminated on	Dimensions and Orientation Width 0.75 m	Ground Level Coordinates National Grid	+14.03 mOI E 250799.6 N 198245.7
	End 21/01/2011	engineer's instruction		Length 3.75 m C	Deg) National Grid Chainage	N 198245./
Samples a	nd Tests		Strata			
Depth	Type & No.	Date Records		Description	Depth, Level (Thickness)	Legend Backfill Instrum
0.30 0.40-0.70 0.50	ES 1 B 2 ES 3		1 MADE GROUND: Brown silty sa to coarse GRAVEL of sandstone v Cobbles are subrounded of sands	Indy subangular to rounded fine0.00-0.30 m Dark with high cobble content. brown with many tone. rootlets.		
- 1.00	ES 4					
1.60-1.90	Β5				- - - - - - (4.30) - -	
2.80-3.10	Β6					
4.00-4.30	В 7		EXPLORATORY HOLE E	NDS AT 4.30 m	- - - - - - - - - - - - - - - - - - -	
Depth	Type & No.	Records				
roundwater Entrie	s	Date	Depth Related Remarks *		Stability Sta	
o. Struck Post Stri (m)			From to (m)		Gabinty Sta	
None observed (se	e Key Sheet)				Shoring Nor Weather Dry	
otes: For explanation breviations see ker vels in metres. Stra depth column.		nd hs and reduced iven in brackets SGL www.esgl.co.uk 24 15/03/2011 15:28:27	Project Machynys Mound, Project No. H1003-11	Machynys	Trial Pit	ГР10

Groundwater Installation Details

Hole No	Instrument ID	Installation Type	Date of Installation	Reference depth (mBGL)	Piezometer Diameter (mm)	Top of response zone (mBGL)	Base of response zone (mBGL)	Tubing Completion Details	Headworks	Remarks
BH1	1	SP	7 Feb 2011	0.00		0.70	2.70	Gas tap	Stop cock	
									cover	
BH1	2	SPIE	7 Feb 2011	0.00	19	6.00	8.00	Open	Stop cock	
									cover	
BH2	1	SP	9 Feb 2011	0.00	50	1.00	3.00	Gas tap	Stop cock	
									cover	

Notes: Type: SP - Standpipe, SPIE - Standpipe Piezometer, HPIE - Hydraulic Piezometer, PPIE -Pneumatic Piezometer, EPIE - Electronic Piezometer Prepared: 10/02/2011 16:43

Groundwater Monitoring - During Fieldwork

	□	It	It			Reading	
Hole ID	Instrument I Instrument Type		Base of Instrument (mBGL)	Date	Time (hhmmss)	Water Level (mBGL)	Comments
BH1	1	SP	2.70	8 Feb 2011	10:50	1.51	
BH1	2	SPIE	7.00	8 Feb 2011	10:52	0.61	
BH1	1	SP	2.70	9 Feb 2011	09:25	1.53	
BH1	2	SPIE	7.00	9 Feb 2011	09:30	0.60	
BH2	1	SP	3.00	10 Feb 2011	11:00	2.00	
BH2	1	SP	3.00	11 Feb 2011	10:15	2.02	

B2

Well Development Monitoring and In Situ Water Test Results

Borehole Number	BH1 (50mm)	BH1 (19mm)	BH2 (50mm)		
Base of Standpipe (m)	2.70	7.00	3.00		
Date	24-Feb-11	24-Feb-11	24-Feb-11		
Operator	DB	DB	DB		
Time of start	15:30	15:25	16:30		
Water Level (m)	1.40	0.60	2.03		

Reading taken at 1 well volume

Temperature (°C)

pH Value

Conductivity (µS/cm)

Dissolved Oxygen (ppm)

Redox Potential (mV)

9.7	Inst	Ins		
7.6	Insufficient	Insufficient		
1400	water to	water to		
51.0	test / sar	test /san		
84.0	sample	'sample		

Τ

Т

1

Water Level after Purging (m)

Time at end of Purge

)	2.70	6.90	2.85		
	15:50	15:55	16:50		

Limited water sample

Г

Well Development & In Situ Water Testing	Machynys Mound, Machynys	Contract:	H1003-11
Soil Mechanics	Carmarthenshire County Council	Figure No:	Visit 1

Well Development Monitoring and In Situ Water Test Results

Borehole Number	BH1 (50mm)	BH1 (19mm)	BH2 (50mm)		
Base of Standpipe (m)	2.70	7.00	3.00		
Date	02-Mar-11	02-Mar-11	02-Mar-11		
Operator	SB	SB	SB		
Time of start	15:06	15:45	16:10		
Water Level (m)	1.50	4.67	2.12		

Reading taken at 1 well volume

Temperature (°C)	9.5	9.3	9.4		
pH Value	7.7	8.0	8.0		
Conductivity (µS/cm)	447	193	44		
Dissolved Oxygen (ppm)	17.6	Insufficient sample	11.9		
Redox Potential (mV)	58.00	0.45	0.26		
		Limited water sample	Limited water sample	1	

Water Level after Purging (m)	2.80	6.25	2.9		
Time at end of Purge	15:15	16:00	16:20		

Well Development & In Situ Water Testing	Machynys Mound, Machynys	Contract:	H1003-11
Soil Mechanics	Carmarthenshire County Council	Figure No:	Visit 2

Well Development Monitoring and In Situ Water Test Results

Borehole Number	BH1 (50mm)	BH1 (19mm)	BH2 (50mm)		
Base of Standpipe (m)	2.70	7.00	3.00		
Date	10-Mar-11	10-Mar-11	10-Mar-11		
Operator	AH	AH	AH		
Time of start	7:30	7:50	8:25		
Water Level (m)	1.70	5.15	2.37		

Reading taken at 1 well volume

Temperature (°C)	9.1	9.1	9.3			
pH Value	7.5	7.8	7.9			
Conductivity (µS/cm)	782	223	49			
Dissolved Oxygen (ppm)	23.0	17.0	15.6			
Redox Potential (mV)	41.00	2.80	2.80			
		Limited water sample	Limited water sample	1	1	

Water Level after Purging (m)	2.54	7.10	2.92		
Time at end of Purge	7:35	7:55	8:30		

Well Development & In Situ Water Testing	Machynys Mound, Machynys	Contract:	H1003-11
Soil Mechanics	Carmarthenshire County Council	Figure No:	Visit 3

Borehole:	BH1
Date:	24-Feb
Operator:	DB

Soil Mechanics

Meteorological Conditions/ Installation Details							
Installation depth (m)	2.70						
Groundwater level (m)	1.40						
Weather conditions	Overcast						
Ambient temperature (°C)	13.5						
Barometric pressure (millibars)	Before monitoring:	1019 After monitoring:	1019				
Differential standpipe pressure (Pa)	0						

Figure:

Visit 1

Equipment Used: LMSx Gas	s Detector, GF60	Flow Monitor	& Dipmeter		
Gas Concentration Readings	Time	CH₄	02	CO ₂	H ₂ S
(Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	п ₂ 3 (ppm)
Before Circulation Monitoring	5	0.0	20.7	0.0	0
,	30	0.0	15.1	2.1	0
	60	0.0	7.5	2.8	0
Gas Concentration Readings	Time	CH ₄	O_2	CO ₂	H ₂ S
(Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)
Before Circulation Monitoring	5 30	0.0	20.5 17.0	0.0	0
	60	0.0	17.0	1.5	0
		0.0			, j
Gas Concentration Readings	Time	CH₄	02	CO ₂	H ₂ S
(Circulation Monitoring Method)	(mins)	(% v/v)	(% v/v)	(% v/v)	(ppm)
	0	0.0	20.3	0.0	0.0
	1	0.0	10.4	2.3	0.0
	2	0.0	8.4	2.6	0.0
	3	0.0	8.2	2.6	0.0
	4	0.0	8.1 9.1	2.5	0.0
	5	0.0	8.1 8.0	2.5 2.6	0.0
	7	0.0	8.0	2.6	0.0
	8	0.0	7.9	2.5	0.0
	9	0.0	8.0	2.5	0.0
	10	0.0	8.1	2.5	0.0
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S
(Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)
After Circulation Monitoring	5	0.0	20.2	0.1	0
	30	0.0	12.3	2.3	0
	60	0.0	8.0	2.5	0
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S
(Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)
After Circulation Monitoring	5	0.0	20.2	0.1	0
	30	0.0	13.0	2.0	0
	60	0.0	10.4	2.2	0
Gas Flow Dispacement Readings	Time	Flow rate	1	Time	Flow rate
_	(mins)	(Litres/hr)	J	(mins)	(Litres/hr)
	0	0.0]	6	0.1
	1	0.1]	7	0.1
	2	0.1	l	8	0.2
	3	0.1	l	9	0.1
	4	0.0		10	0.0
	5	0.1	1		
Gas Monitoring Record		Machy	nys Mound,	, Machynys	

Carmarthenshire County Council

Borehole:	BH2	
Date:	24-Feb	
Operator:	DB	
		8

Meteorological Conditions/ Installation Details							
allation depth (m)	3.00						
undwater level (m)	2.03						
ther conditions	Overcast						
ient temperature (°C)	13						
metric pressure (millibars)	Before monitoring:	1019 After monitoring:	1019				
rential standpipe pressure (Pa)	0						

Equipment Used: LMSx Gas	Detector, GF60	Flow Monitor	& Dipmeter				
Gas Concentration Readings (Valve 1 - suspended tube)	Time (secs)	CH₄ (% v/v)	0 ₂ (% v/v)	CO ₂ (% v/v)	H₂S (ppm)	1	
Before Circulation Monitoring	5 30 60		nonitor due to	suspended tube er level			
		_	_			-	
Gas Concentration Readings (Valve 2)	Time (secs)	CH₄ (% v/v)	O₂ (% v/v)	CO₂ (% v/v)	H₂S (ppm)		
Before Circulation Monitoring	5 30	0.0	20.8 20.3	0.0	0		
	60	0.0	20.1	0.0	0]	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H ₂ S	1	
(Circulation Monitoring Method)	(mins)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
	0					•	
	2					1	
	3						
	5					1	
	6					-	
	8					1	
	9 10					-	
						3	
Gas Concentration Readings	Time		O_2	CO ₂	H_2S]	
(Valve 1 - suspended tube) After Circulation Monitoring	(secs) 5	(% v/v)	(% v/v)	(% v/v)	(ppm)	1	
	30					1	
	60					J	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H ₂ S	1	
(Valve 2) After Circulation Monitoring	(secs) 5	(% v/v)	(% v/v)	(% v/v)	(ppm)		
	30					1	
	60					J	
Gas Flow Dispacement Readings	Time (mins)	Flow rate (Litres/hr)	1	Time (mins)	Flow rate (Litres/hr)	1	
	(mms) 0	0.0	1	(mms) 6	(<i>Litres/III</i>) 0.1	1	
	1	0.1		7	0.0]	
	2	0.0		8 9	0.1	1	
	4	0.2		10	0.1	1	
	5	0.1	J I			J	
Gas Monitoring Record		Machy	nys Mound, M	Machynys		Contract:	H10
Soil Mechanics	-	Carmarthenshire County Council				Figure:	

Borehole:	BH1
Date:	01-Mar
Operator:	SB

Meteorological Conditions/ Installation Details							
Installation depth (m)	2.70						
Groundwater level (m)	1.50						
Weather conditions	Dry						
Ambient temperature (°C)	10						
Barometric pressure (millibars)	Before monitoring:	1033 After monitoring:	1033				
Differential standpipe pressure (Pa)	0						

						-	
Gas Concentration Readings	Time		O_2		H_2S		
(Valve 1 - suspended tube) Before Circulation Monitoring	(secs) 5	(% v/v) 3.9	(% v/v) 20.2	(% v/v) 1.0	(ppm) 0	4	
Before Circulation Monitoring	30	3.9	20.2	1.0	0	-	
	60	3.8	20.0	1.0	0	-	
				-	-	4	
Gas Concentration Readings	Time	CH₄	0 ₂	CO ₂	H₂S	1	
(Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
Before Circulation Monitoring	5	3.6	20.3	0.5	0	1	
-	30	3.6	19.9	1.0	0		
	60	3.5	19.9	1.0	0		
Gas Concentration Readings	Time	CH₄	O ₂	CO ₂	H₂S	1	
(Circulation Monitoring Method)	(mins)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
	0	3.3	20.5	0.2	0.0	4	
	1	3.2	20.3	0.9	0.0	4	
	2	3.2	20.3	0.9	0.0	4	
	3	3.5 3.8	20.1 20.0	0.9	0.0	-	
	5	3.8	19.9	0.9	0.0	1	
	6	3.9	19.8	0.9	0.0	1	
	7	4.0	19.8	0.9	0.0	1	
	8	4.0	19.7	0.9	0.0	1	
	9	4.1	19.7	0.9	0.0		
	10	4.0	19.6	0.9	0.0		
						_	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	1	
(Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	4	
After Circulation Monitoring	5	3.3	19.9	0.7	0	-	
	30 60	2.7 2.3	19.9 19.7	0.9	0	-	
	00	2.0	10.7	0.0	U	4	
Can Concentration Readings	Time	04	0	<u> </u>	μc	7	
Gas Concentration Readings (Valve 2)	Time (secs)	CH₄ (% v/v)	O₂ (% v/v)	CO 2 (% v/v)	H₂S (ppm)		
After Circulation Monitoring	5	2.8	19.9	0.7	0	1	
	30	3.7	19.9	0.9	0	1	
	60	2.3	19.7	0.8	0]	
Gas Flow Dispacement Readings	Time	Flow rate	1	Time	Flow rate	1	
	(mins)	(Litres/hr)		(mins)	(Litres/hr)		
	0	1.2	1	6	-0.3	1	
	1	0.6	1	7	0.0	1	
	2	-1.4	l	8	-1.8]	
	3	0.3		9	-2.3	4	
	4	0.5	l	10	-0.7	4	
	5	0.2	I			J	
Coo Monitoring Decord		Machy	nys Mound,	Machynys		Contract:	H10
Gas Monitoring Record							
Soil Mechanics	-	-		unty Council			

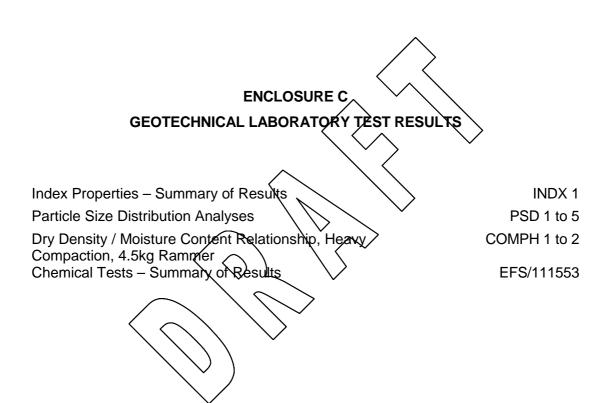
Borehole:	BH2
Date:	01-Mar
Operator:	SB

Meteorological Conditions/ Installation Details							
Installation depth (m)	3.00						
Groundwater level (m)	2.03						
Weather conditions	Dry						
Ambient temperature (°C)	9						
Barometric pressure (millibars)	Before monitoring:	1032 After monitoring:	1033				
Differential standpipe pressure (Pa)	0						

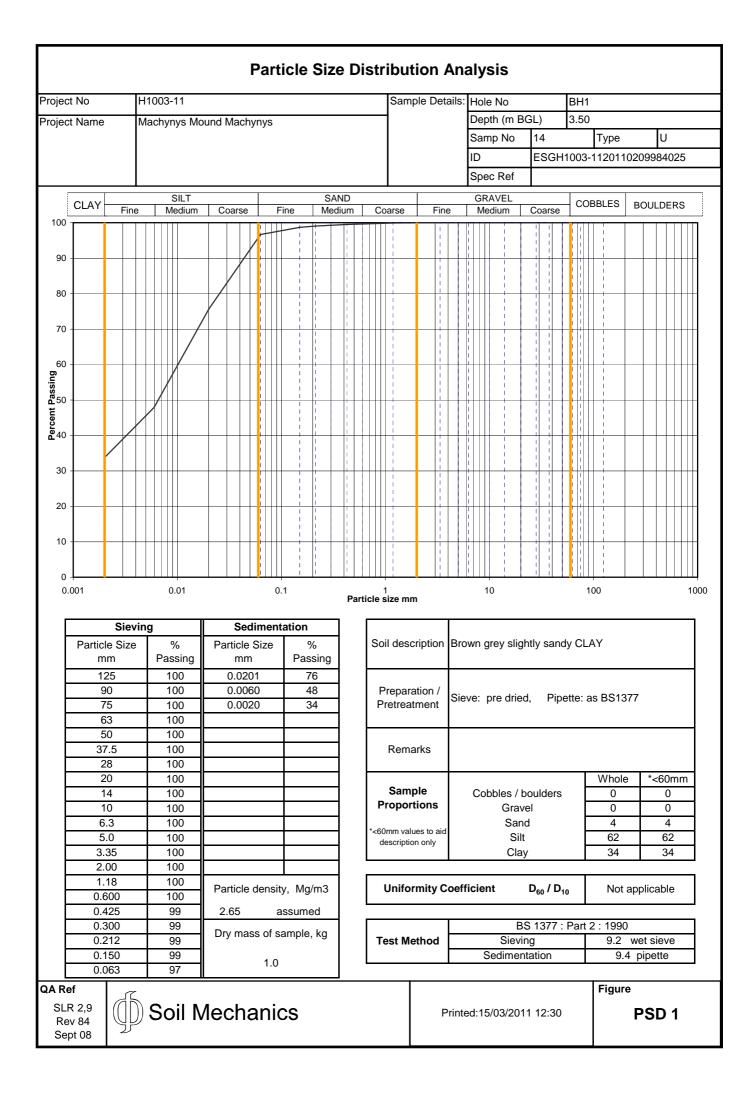
Con Concentration Deadlines	T ime -		<u>^</u>	<u> </u>	<i>ц</i> с	1
Gas Concentration Readings (Valve 1 - suspended tube)	Time (secs)	CH₄ (% v/v)	O₂ (% v/v)	CO 2 (% v/v)	H₂S (ppm)	
Before Circulation Monitoring	5	1.1	20.0	0.2	0.0	
	30	1.1	18.0	0.9	0.0	-
	60	1.1	18.0	0.9	0.0	
Bas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	
Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
Before Circulation Monitoring	5	0.0	20.5	0.0	0.0	_
	30	0.0	20.3	0.0	0.0	
	60	0.0	19.9	0.0	0.0	
And Concentration Readings	Time	011		00		
Gas Concentration Readings Circulation Monitoring Method)	Time (mins)	CH₄ (% v/v)	O₂ (% v/v)	CO 2 (% v/v)	H₂S (ppm)	
	0	0.9	20.4	0.1	0.0	
	1	0.9	19.5	0.1	0.0	-
	2	0.8	19.1	0.5	0.0	
	3	0.7	18.7	0.6	0.0	
	4	0.7	18.6	0.7	0.0	
	5	0.7	18.5	0.7	0.0	
	6	0.6	18.6	0.7	0.0	
	7	0.7	18.8	0.7	0.0	
	8	0.8	18.9	0.6	0.0	
	9	0.8	18.9	0.6	0.0	
	10	0.8	18.9	0.6	0.0	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	1
Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
After Circulation Monitoring	5	0.7	19.8	0.3	0.0	
	30	0.9	18.9	0.6	0.0	_
	60	0.8	18.4	0.7	0.0	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	
Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
After Circulation Monitoring	5	0.4	19.9	0.3	0.0	
	30	0.5	19.9	0.3	0.0	
	60	0.5	19.4	0.3	0.0]
	Tim	5 /2000 (1	Time	-------------	1
Bas Flow Dispacement Readings	Time (mins)	Flow rate (Litres/hr)		Time (mins)	Flow rate (Litres/hr)	
	(mins) 0	(Litres/nr) 0.0		(mins) 6	(Litres/hr) -0.4	-
	1	1.5		6 7	-0.4	-
	2	2.0	1	8	0.7	
	3	1.7	1	9	0.2	
	4	0.0	1	10	0.7	
	5	0.5	1		-	
			_			_
Coo Monitoring Poored		Maak	nyo Merina	Maabura		
Gas Monitoring Record		Machy	nys Mound,	Machynys		Contract:
	$\overline{-}$	-	-			
Gas Monitoring Record Soil Mechanics		-	-	Machynys unty Council		Contract: Figure:

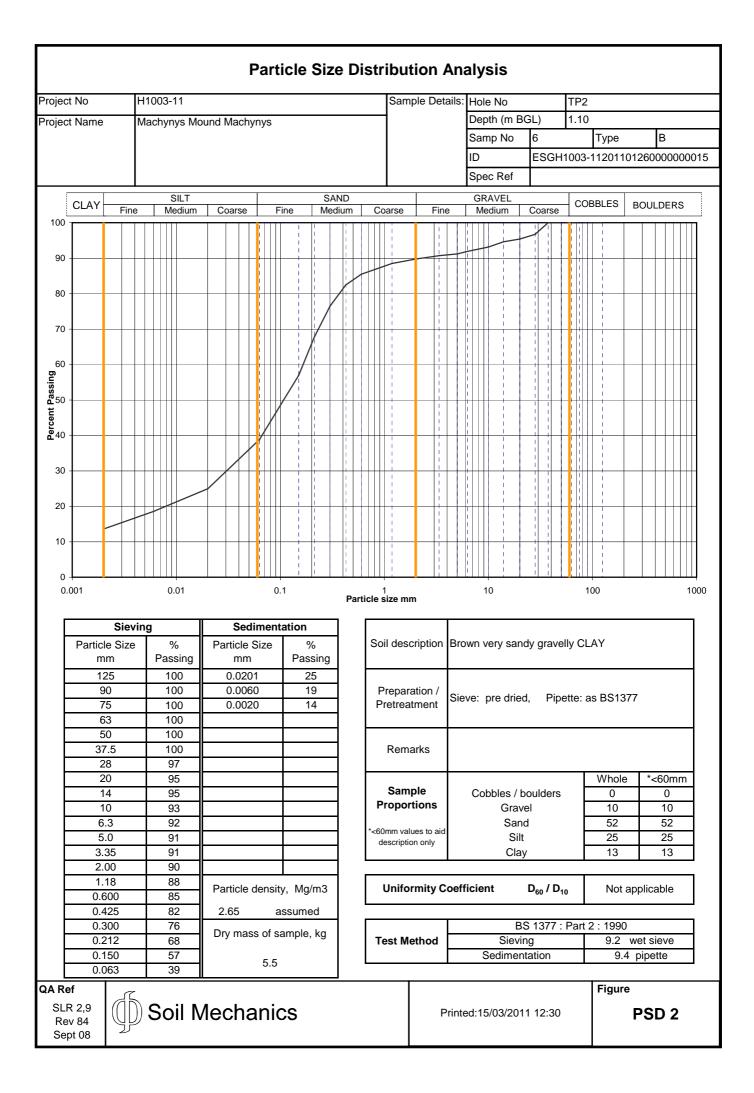
Borehole:	BH1
Date:	10-Mar
Operator:	AH

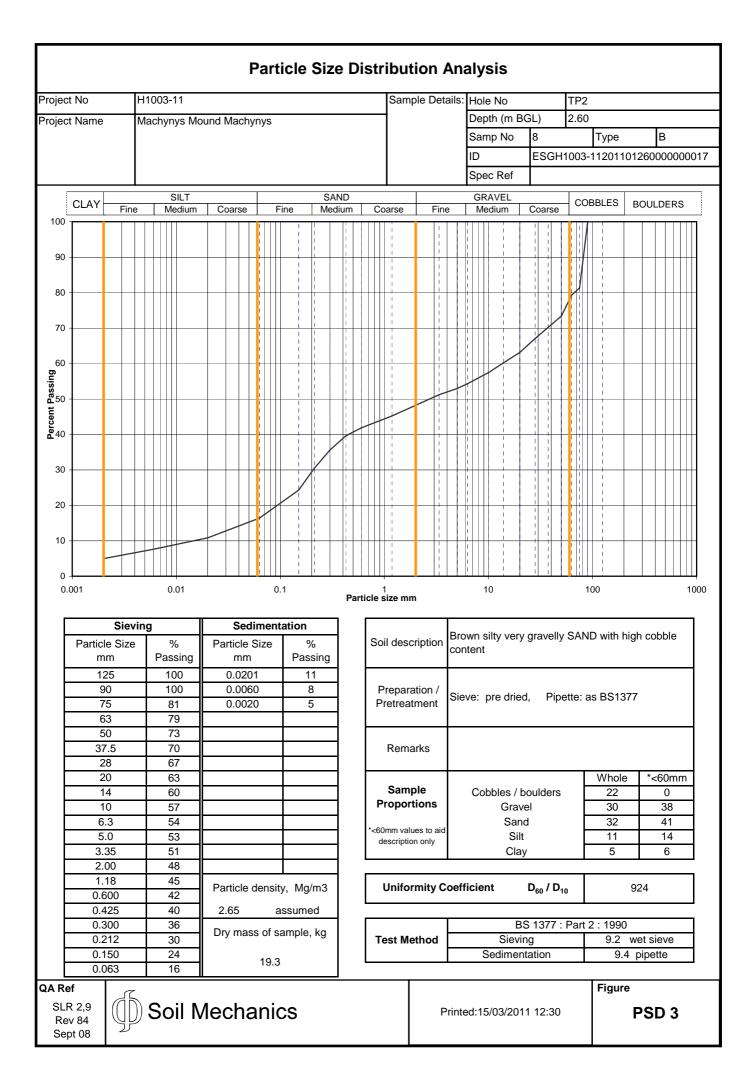
Meteorological Conditions/ Installation Details						
Installation depth (m)	2.70					
Groundwater level (m)	1.70					
Weather conditions	Cloudy					
Ambient temperature (°C)	9					
Barometric pressure (millibars)	Before monitoring:	1017 After monitoring:	1018			
Differential standpipe pressure (Pa)	0					


Equipment Used: LMSx Gas	Detector, GF60	Flow Monitor	& Dipmeter			
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	1
(Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
Before Circulation Monitoring	5	1.6	19.1	0.3	0	1
	30	1.9	17.3	2.5	0	1
	60	1.5	8.9	3.1	0	
					-	-
Bas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	
Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
Before Circulation Monitoring	5	0.2	20.1	0.3	0	-
	30	0.9	17.4	1.9	0	-
	60	1.3	13.8	2.5	0	
		011				1
Bas Concentration Readings Circulation Monitoring Method)	Time		O_2	CO_2	H_2S	
Circulation Monitoring Method)	(mins)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
	0	3.3	20.5	0.2	0.0	-
	1	3.2	20.3	0.9	0.0	-
	2	3.2	20.3	0.9	0.0	-
	3	3.5	20.1	0.9	0.0	-
	4	3.8	20.0	0.9	0.0	
	5	3.8	19.9	0.9	0.0	
	6	3.9 4.0	19.8 19.8	0.9	0.0	-
	8	4.0	19.8	0.9	0.0	
	9	4.0	19.7	0.9	0.0	1
	9 10	4.1	19.7	0.9	0.0	-
	10	4.0	10.0	0.0	0.0	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	1
(Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
After Circulation Monitoring	5	2.9	18.5	0.7	0	
	30	2.7	19.4	1.5	0	
	60	2.3	19.1	1.3	0	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H ₂ S	
(Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)	
After Circulation Monitoring	5	2.1	20.7	0.4	0	
	30	2.7	19.9	0.9	0	-
	60	2.1	19.1	1.0	0	J
Gas Flow Dispacement Readings	Time	Flow rate	1	Time	Flow rate	7
	(mins)	(Litres/hr)		(mins)	(Litres/hr)	
	0	0.2	1	6	0.3	ſ
	1	0.2	1	7	0.0	
	2	0.0	1	8	0.0	ĺ
	3	0.0	1	9	0.5	1
	4	0.2	1	10	-0.2	1
	5	0.0	1		0.2	1
			-			
Gas Monitoring Record		Machy	nys Mound,	Machynys		
	-					╞
Soil Mechanics	1	Carmarth	onshira Ca	unty Council		F

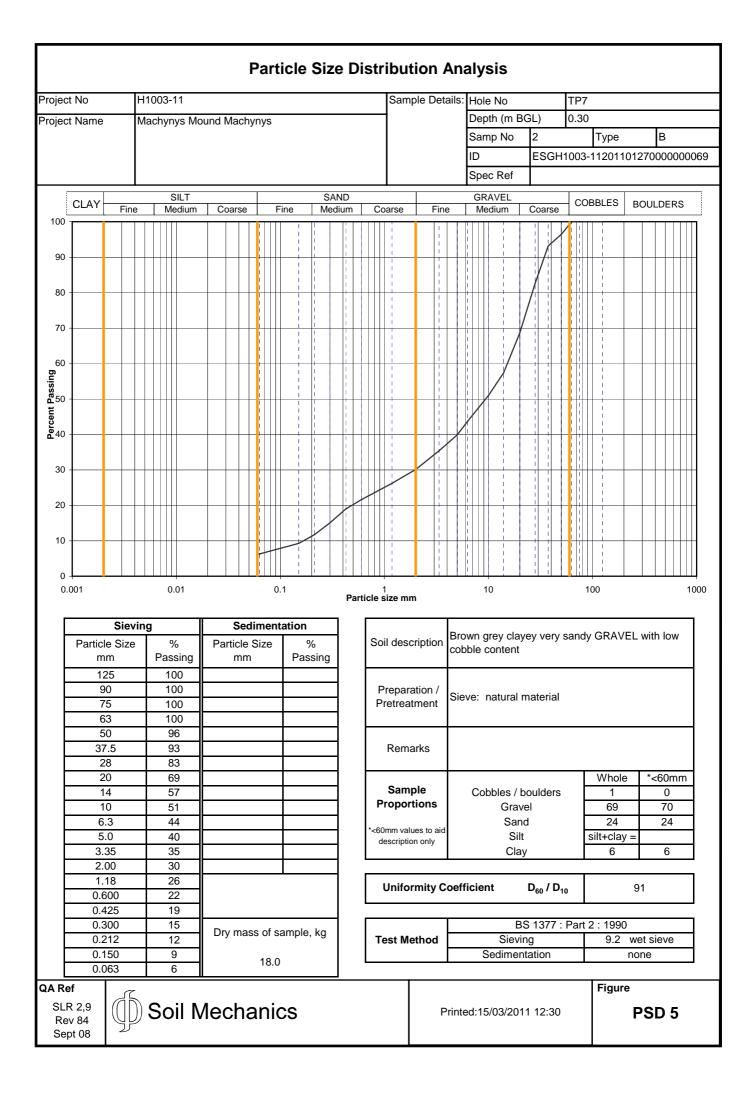
Borehole:	BH2
Date:	10-Mar
Operator:	AH

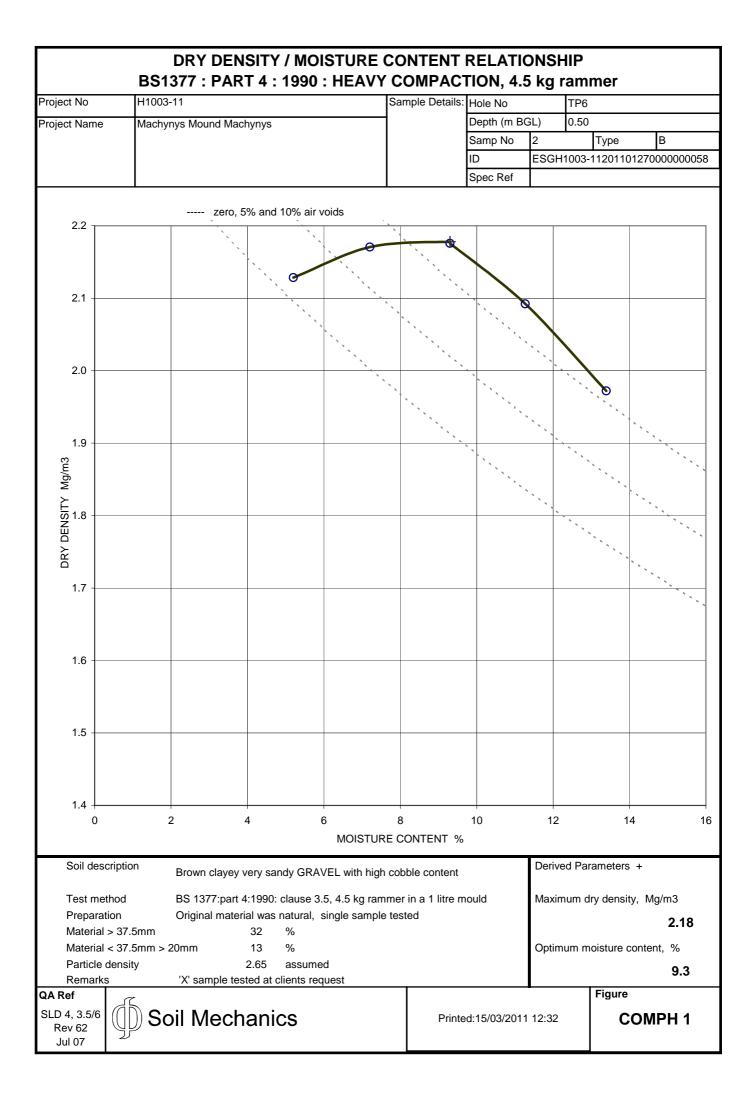

Meteorological Conditions/ Installation Details							
Installation depth (m)	3.00						
Groundwater level (m)	2.37						
Weather conditions	Cloudy						
Ambient temperature (°C)	9						
Barometric pressure (millibars)	Before monitoring:	1017 After monitoring:	1017				
Differential standpipe pressure (Pa)	0						

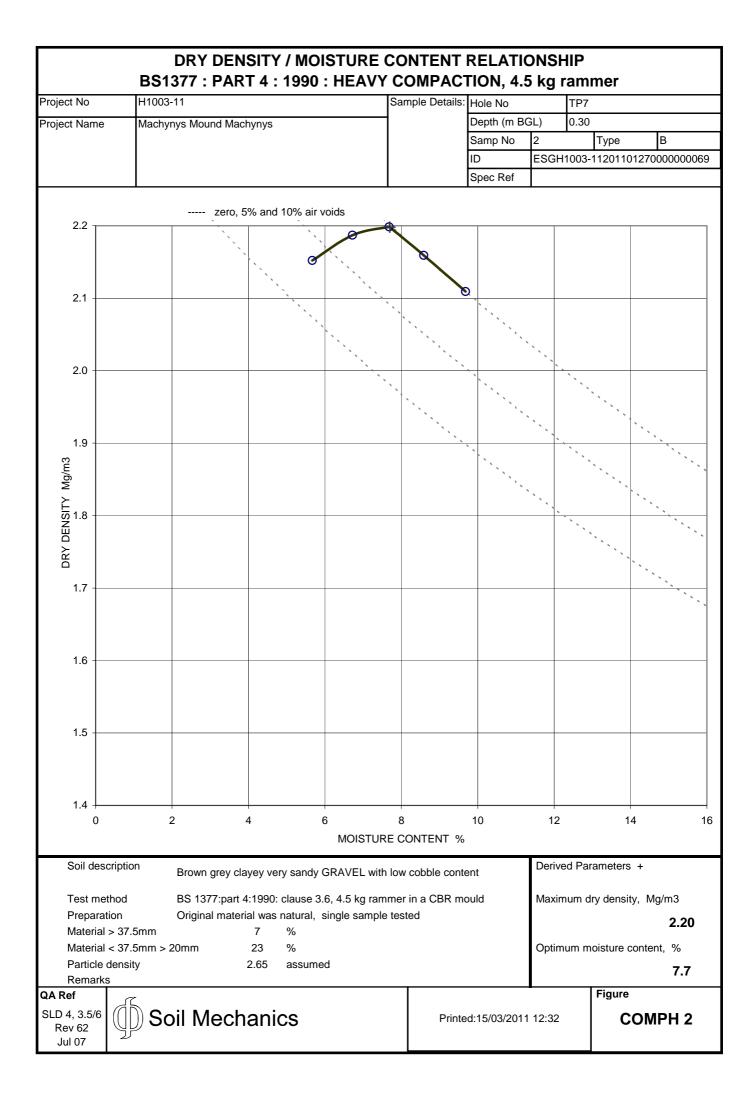

Equipment Used: LMSx Gas	Detector, GF60	Flow Monitor 8	& Dipmeter				
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	٦	
(Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
Before Circulation Monitoring	5	0.4	20.3	0.2	0.0		
-	30	1.0	19.8	0.7	0.0		
	60	1.2	18.0	0.9	0.0	1	
						_	
Gas Concentration Readings	Time	CH₄	O ₂	CO ₂	H₂S	7	
(Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
Before Circulation Monitoring	5	0.0	20.6	0.0	0		
	30	0.0	20.2	0.0	0		
	60	0.0	19.8	0.0	0		
Gas Concentration Readings	Time	CH₄	0 ₂	CO ₂	H₂S		
(Circulation Monitoring Method)	(mins)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
	0	0.2	20.6	0.1	0.0		
	1	0.5	19.9	0.3	0.0		
	2	0.8	19.3	0.4	0.0	1	
	3	0.7	18.7	0.6	0.0	4	
	4	0.7	18.6	0.6	0.0	4	
	5	0.6	18.4	0.6	0.0		
	6	0.6	18.6	0.7	0.0	_	
	7	0.7	18.6	0.9	0.0	_	
	8	0.5	18.7	0.8	0.0		
	9 10	0.5	18.4 18.9	0.6	0.0	_	
	10	0.0	10.5	0.0	0.0	3	
Gas Concentration Readings	Time	CH₄	02	CO ₂	H₂S	٦	
(Valve 1 - suspended tube)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
After Circulation Monitoring	5	0.4	20.0	0.2	0.0		
, and the second s	30	0.5	19.5	0.5	0.0		
	60	0.8	18.4	0.7	0.0]	
						_	
Gas Concentration Readings	Time	CH₄	O ₂	CO ₂	H₂S		
(Valve 2)	(secs)	(% v/v)	(% v/v)	(% v/v)	(ppm)		
After Circulation Monitoring	5	0.1	20.0	0.2	0.0		
	30	0.3	19.6	0.4	0.0		
	60	0.5	19.4	0.4	0.0		
Gas Flow Dispacement Readings	Time	Flow rate	ĺ	Time	Flow rate	٦	
- C	(mins)	(Litres/hr)		(mins)	(Litres/hr)		
	0	-0.1		6	0.0	1	
	1	0.1		7	-0.1]	
	2	0.0		8	-0.1		
	3	0.0		9	0.2	1	
	4	0.3		10	0.0	1	
	5	0.2					
Gas Monitoring Record		Machy	/nys Mound	, Machynys		Contract:	H1003-
J							






INDEX PROPERTIES - SUMMARY OF RESULTS														
Project No	Project N	Name												
H1003-11	Machyny	/s Moun	nd Mach	nynys										
		Samp	ole			р	p_{d}	W	< 425	W_{L}	W _P	Ι _Ρ	p _s	
Hole No.		Dept	h (m)		Soil Description		, u		µm sieve				, .	Remarks
	No.	from	to	type		Mg	/m ³	%	%	%	%		Mg/m ³	
BH1	14	3.50	4.00	U	Brown grey slightly sandy CLAY			33	99 n	51 a	22	29		
BH1	18	5.00	5.50	U	Brown grey slightly sandy CLAY			23	100 n	51 a	20	31		
TP2	6	1.10	1.40	в	rown very sandy gravelly CLAY			21	82 n	29 a	19	10		
TP3	2	0.30	0.50	В	Brown slightly sandy very gravelly CLAY			19	73 s	37 a	21	16		
TP5	9	3.30	3.60	в	Grey brown slightly sandy CLAY			29	100 n	37 a	20	17		
TP6	2	0.50	0.80	В	Brown clayey very sandy GRAVEL with high			7.3	15 n	25 a	12	13		
TP6	9	3.00	3.30	в	cobble content Grey brown slightly sandy slightly gravelly			26	100	43 a	21	22		
TP7	2	0.30	0.60	В	CLAY Brown grey clayey very sandy GRAVEL with			5.4	19 s	22 a	14	8		
TP8	7	2.70	3.00	В	low cobble content Grey brown very sandy CLAY			33	100 n	37 a	24	13		
TP9	8	2.70	3.10	в	Brown grey slightly sandy CLAY			36	100 n	57 a	24	30		
	0	2.00	5.10	В				50	100 11	55 a	25	30		
General notes:	All above to	ests carrie	d out to B		: 1990 definitive method in all cases unless an	notated	otherwi	se. See					er details	s.
Key :		bulk dens					Plastic I				n prepar			p_s particle density
		dry densit					non - pl				natural ed speci			-g = gas jar
QA Ref	w	moisture	content			IP	Plasticit	y index		5 51676	La speci			-p = small pyknometer Table
SLR 1 Rev 84 Nov 08	()	So	il M	lec	hanics			F	Printed	:15/03	3/2011	12:3	0	INDX 1





TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/111553 (Ver. 1)

Soil Mechanics Unit 15 Crosby Yard Bridgend Mid Glamorgan CF31 1JZ

Site: Machyny's Mound

The 13 samples described in this report were logged for analysis by Scientifics on 28-Feb-2011. This report supersedes any versions previously issued by the laboratory. The analysis was completed by: 11-Mar-2011

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Table of Method Descriptions (Page 3) Table of Report Notes (Page 4)

On behalf of Scientifics : Andrew Timms

Hum

Operations Manager

Date of Issue: 11-Mar-2011

Tests marked '^' have been subcontracted to another laboratory.

Scientifics accepts no responsibility for any sampling not carried out by our personnel.

	Units :	%	g/l											
	Method Codes :	WSLM40	WSLM42											
	Method Reporting Limits :	0.1	0.01											
Laboratory ID Number CL/	Client Sample Description	Organic Mat % BS1377	Sulphate (W) BS1377											
1107364	BH1 1.2-1.7		0.06											
1107374	BH1 3.0-3.5	2.33												
1107365	BH1 5.6-6.1		0.06											
1107366	BH2 1.2-1.7		<0.01											
1107367	TP1 1.0-1.3		0.05											
1107368	TP4 0.3-0.6		0.06											
1107369	TP5 0.5-0.8		<0.01											
1107375	TP5 3.3-3.6	1.70												
1107370	TP6 1.4-1.7		<0.01											
1107371	TP7 2.4-2.7		<0.01											
1107372	TP8 0.8-1.2		<0.01											
1107376	TP8 2.7-3.0	1.98												
1107373	TP9 0.5-0.8		<0.01											
	scientifics Client Name Soil Mechanics			s			Soils Sample Analysis							
	Bretby Business Park, Ashby Road					Date Printed 11-Mar-11								
	Burton-on-Trent, Staffordshire, DE15 0YZ							-		11-Mar-11				
	Tel +44 (0) 1283 554400	Machyny's Mound										EFS/111553		
	Fax +44 (0) 1283 554422		maonyny o moana						Table Nu	umber		1		

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	WSLM40	Air Dried	Acid Dichromate oxidation of the sample followed by Titrimetric analysis of the extract
Soil	WSLM42	Air Dried	Determination of Water Soluble Sulphate in soil using Hydrochloric Acid digestion followed by gravimetric analysis

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample

Symbol Reference

^ Sub-contracted analysis. Note: The accreditation status is that assigned by the subcontract laboratory.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

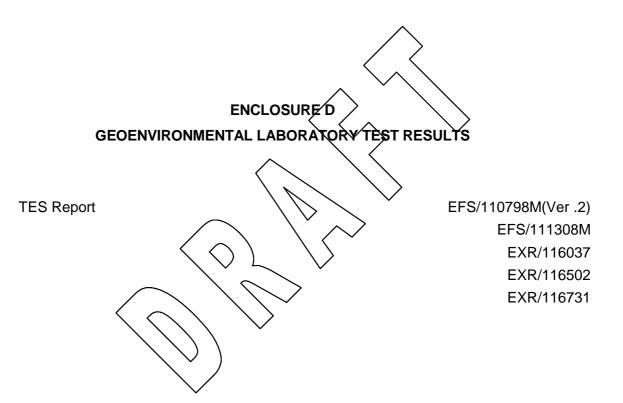
N.D Not determined

N.Det Not detected

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result


‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

END OF REPORT

Where individual results are flagged see report notes for status.

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/110798M (Ver. 2)

Soil Mechanics Unit 15 Crosby Yard Bridgend Mid Glamorgan CF31 1JZ

Site: Machyny's Mound

The 15 samples described in this report were logged for analysis by Scientifics on 04-Feb-2011. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 28-Feb-2011

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by Scientifics.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (80) Results (Pages 4 to 9) Table of PCB Congener Results (Page 10) Table of PCB Congener (12) Results (Page 11) Table of SVOC Results (Pages 12 to 20) Table of SVOC (Tics) Results (Pages 21 to 29) Table of GRO Results (Page 30) Table of TPH (Si) banding (std) (Page 31) GC-FID Chromatograms (Pages 32 to 61) Table of VOC (HSA) Results (Pages 62 to 70) Table of Dioxin Results (Page 71) Table of Furan Results (Page 72) Table of Asbestos Screening Results (Page 73) Table of Additional Report Notes (Page 74)

age 75)

On behalf of Scientifics : Andrew Timms

Operations Manager

Date of Issue: 28-Feb-2011

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory. (NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS. All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) Scientifics accepts no responsibility for any sampling not carried out by our personnel.

	Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Method Codes :	ICPACIDS	ICPBOR	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPSOIL	ICPSOIL	ICPWSS	PAHMSUS
	Method Reporting Limits : Accreditation Code:	20 UM	0.5 UM	0.3 UM	0.2 UM	1.2 UM	1.6 UM	0.7 UM	0.5 UM	2 UM	0.5 UM	0.6 U	16 UM	1 N	0.1 UM	10 UM	0.08
Laboratory ID Number CL/	Client Sample Description	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Vanadium (MS)	Zinc (MS)	Barium.	Beryllium.	SO4 (H2O sol) mg/l	PAH by MS.16(0.08)
1103738	TP1 D 5 1.00	1560	0.9	24	0.68	82.5	124.6	221	<0.5	31	0.8	79.2	213.4	356	1.26	262	
1103739	TP1 D 8 3.00	1120	1.1	24.4	0.73	355.1	105.7	115	0.61	32.1	0.6	1020	302.5	380	0.86	214	
1103740	TP2 D 2 0.20	916	<0.5	54.2	1.5	24.1	157.8	198.2	<0.5	27.3	1.2	34	446.9	173	0.83	73	Req
1103741	TP3 D 4 1.00	164	0.5	13.7	<0.2	18	15.6	14.6	<0.5	15.2	0.6	22.9	57.3	36.4	0.57	23	Req
1103742	TP4 D 1 0.20	623	0.9	11.1	0.21	16.7	28	29	<0.5	17	<0.5	18.4	83.5	65.1	0.59	255	
1103743	TP4 D 7 2.00	512	0.8	20.5	1.1	26.9	55.3	109.3	<0.5	27.2	0.6	25.1	286.2	131	0.8	107	
1103744	TP4 D 9 3.00	502	0.5	8.4	<0.21	16.2	17.5	21.5	<0.5	24.8	0.7	16.2	95.7	40	0.85	279	Req
1103745	TP5 D 3 0.60	572	0.7	11	<0.21	17.2	27.4	31.3	<0.5	19.8	<0.5	19.4	84.7	64.3	0.58	223	
1103746	TP5 D 6 2.00	2090	3	116.8	1.01	25.4	158	125.1	<0.49	50.9	1.1	55.5	515.9	414	1.59	412	Req
1103747	TP6 D 6 1.50	786	1	40.9	0.68	41	200	127.6	<0.50	64.4	0.6	39	239	216	0.89	210	
1103748	TP7 D 6 2.00	467	<0.6	17.4	0.24	22.9	45	37.6	<0.6	23.6	<0.6	30.6	80.6	115	0.91	289	
1103749	TP8 D 2 0.50	1920	1	27.7	1.6	34.1	442	181.8	<0.50	40.6	0.6	36.4	939.9	329	0.9	316	
1103750	TP8 D 6 2.00	1200	0.7	39.5	0.62	24.6	147.2	577.7	<0.5	49.1	1.2	54.8	562.3	850	2.32	378	Req
1103751	TP9 D 6 1.50	1380	2.3	26.9	0.67	32.8	259.1	110.6	<0.54	36.3	0.7	41.6	254	199	1.27	417	
1103752	TP10 D 1 0.30	406	<0.5	14.8	<0.21	15.5	37.3	68.8	<0.5	20.2	0.6	17.8	110.9	73.2	0.73	70	Req
	scientifics	Client N	ame	Soil Me	chanics						S	Soils Sa	ample /	Analysi	S		
E	Bretby Business Park, Ashby Road	Contact		Mr A Hen	ry												
E	Burton-on-Trent, Staffordshire, DE15 0YZ										Date Prin	ted			28-Feb-11		
	Tel +44 (0) 1283 554400			R	look		Marria	٦			Report N	umber		EF	S/110798M		
	Fax +44 (0) 1283 554422			N	hacny	my S I	Moun	u			Table Nu	mber			1		

	Units :	pH Units	mg/kg	mg/kg		%	mg/kg	ug/kg	mg/kg	ug/kg	ug/kg	mg/kg		mg/kg	% M/M	
	Method Codes :	PHSOIL	SFAPI	SFAPI	Sub02a	TMSS		VOCHSAS	GROHSA	PCBUSECDAF	PCBUSECDAR	SFAS	Sub08	SVOCMSUS		
	Method Reporting Limits :	UM	0.5 UM	0.5 UM	U	0.2 U	10.0	1	0.1			0.5 N		0.2-10.0	0.01 N	
	Accreditation Code:	UM	UIVI	UIVI	0	U						IN			IN	
Laboratory ID Number CL/	Client Sample Description	pH units (AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)	^Asbestos Screen	Tot. Moisture @ 105C	TPH by GCFID (AR/Si)	VOC + TICs HSA-MS	GRO (AA)	PCB-12 Congeners(AR)	PCB-7 Congeners(AR)	Sulphide as S (AR)	^Dioxins & Furans AD	SVOC + TICs (AR)	Total Organic Carbon	
1103738	TP1 D 5 1.00	8.7	<0.6	<0.6	NAIIS	14.4	Req	Req	Req	Req	Req	<0.6	Req	Req	2.599	
1103739	TP1 D 8 3.00	8.9	<0.6	<0.6	NAIIS	10.8	Req	Req	Req			<0.6		Req	5.05	
1103740	TP2 D 2 0.20	5.9	<0.7	<0.7	NAIIS	29.9	Req		Req			1.9			11.79	
1103741	TP3 D 4 1.00	7.9	<0.6	<0.6	NAIIS	15.3	Req		Req			<0.6			0.732	
1103742	TP4 D 1 0.20	8.7	<0.6	<0.6	NAIIS	11.7	Req	Req	Req	Req	Req	<0.6	Req	Req	1.816	
1103743	TP4 D 7 2.00	8.6	<0.5	<0.5	СН	8.2	Req	Req	Req			<0.5		Req	3.91	
1103744	TP4 D 9 3.00	8.0	<0.6	<0.6	NAIIS	13.6	Req		Req			20.9			0.868	
1103745	TP5 D 3 0.60	8.6	<0.6	<0.6	NAIIS	11.6	Req	Req	Req			0.7		Req	1.826	
1103746	TP5 D 6 2.00	8.4	<0.6	<0.6	NAIIS	17.7	Req		Req			<0.6			20.8	
1103747	TP6 D 6 1.50	7.9	<0.6	<0.6	СН	17.8	Req	Req	Req			1.1		Req	8.67	
1103748	TP7 D 6 2.00	8.0	<0.6	<0.6	NAIIS	20.4	Req	Req	Req			<0.6		Req	4.78	
1103749	TP8 D 2 0.50	8.8	<0.6	<0.6	СН	14.1	Req	Req	Req			<0.6		Req	8.65	
1103750	TP8 D 6 2.00	8.2	<0.7	<0.7	NAIIS	32.5	Req		Req			31.4			18.3	
1103751	TP9 D 6 1.50	6.2	<0.8	<0.8	NAIIS	35.2	Req	Req	Req	Req	Req	12.7	Req	Req	7.01	
1103752	TP10 D 1 0.30	7.7	<0.6	<0.6	NAIIS	15.0	Req		Req			<0.6			2.234	
	cientifics to Business Park, Ashby Road	Client N	ame		chanics						5	Soils Sa	ample	Analysi	s	
				00 Eab 44												
	ton-on-Trent, Staffordshire, DE15 0YZ										Date Prin				28-Feb-11	
	el +44 (0) 1283 554400			Ν	/lachy	nv's	Moun	d			Report N			EFS	S/110798M	
Fa	ax +44 (0) 1283 554422					, 0		-			Table Nu	ımber			1	

Customer and Site Details:	Soil Mechanics: Machyny's Moun	d	
Sample Details:	TP2 D 2 0.20	Job Number:	S11_0798M
LIMS ID Number:	CL1103740	Date Booked in:	04-Feb-11
QC Batch Number:	110226	Date Extracted:	09-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	11-Feb-11
Directory:	911PAH.MS14\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.11	-	UM
Acenaphthylene	208-96-8	-	< 0.11	-	U
Acenaphthene	83-32-9	-	< 0.11	-	UM
Fluorene	86-73-7	-	< 0.11	-	UM
Phenanthrene	85-01-8	5.79	0.20	95	UM
Anthracene	120-12-7	-	< 0.11	-	U
Fluoranthene	206-44-0	7.14	0.33	77	UM
Pyrene	129-00-0	7.43	0.23	87	UM
Benzo[a]anthracene	56-55-3	9.12	0.19	87	UM
Chrysene	218-01-9	9.17	0.24	90	UM
Benzo[b]fluoranthene	205-99-2	10.66	0.30	90	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.11	-	UM
Benzo[a]pyrene	50-32-8	11.09	0.16	91	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.48	0.10	64	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.11	-	UM
Benzo[g,h,i]perylene	191-24-2	12.78	0.10	77	UM
Total (USEPA16) PAHs	-	-	< 2.72	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	106
Acenaphthene-d10	112
Phenanthrene-d10	130
Chrysene-d12	140
Perylene-d12	132

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	81
Terphenyl-d14	95

Concentrations are reported on a dry weight basis.

Customer and Site Details:	Soil Mechanics: Machyny's Moun	d	
Sample Details:	TP3 D 4 1.00	Job Number:	S11_0798M
LIMS ID Number:	CL1103741	Date Booked in:	04-Feb-11
QC Batch Number:	110226	Date Extracted:	09-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	11-Feb-11
Directory:	911PAH.MS14\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	-	< 0.09	-	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	-	< 0.09	-	UM
Pyrene	129-00-0	-	< 0.09	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.09	-	UM
Chrysene	218-01-9	-	< 0.09	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.09	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.09	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Total (USEPA16) PAHs	-	-	< 1.51	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	112
Acenaphthene-d10	115
Phenanthrene-d10	135
Chrysene-d12	146
Perylene-d12	135

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	82
Terphenyl-d14	97

Concentrations are reported on a dry weight basis.

Customer and Site Details:	Soil Mechanics: Machyny's Mour	nd	
Sample Details:	TP4 D 9 3.00	Job Number:	S11_0798M
LIMS ID Number:	CL1103744	Date Booked in:	04-Feb-11
QC Batch Number:	110261	Date Extracted:	11-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	12-Feb-11
Directory:	111PAH.MS20\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	4.63	0.10	М	U
Acenaphthene	83-32-9	4.76	0.31	62	UM
Fluorene	86-73-7	5.17	0.27	М	UM
Phenanthrene	85-01-8	6.08	0.28	89	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	-	< 0.09	-	UM
Pyrene	129-00-0	-	< 0.09	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.09	-	UM
Chrysene	218-01-9	-	< 0.09	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.09	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.09	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Total (USEPA16) PAHs	-	-	< 2.10	-	Ν

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	104
Acenaphthene-d10	109
Phenanthrene-d10	113
Chrysene-d12	120
Perylene-d12	117

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	83
Terphenyl-d14	91

Concentrations are reported on a dry weight basis.

Customer and Site Details:	Soil Mechanics: Machyny's Moun	d	
Sample Details:	TP5 D 6 2.00	Job Number:	S11_0798M
LIMS ID Number:	CL1103746	Date Booked in:	04-Feb-11
QC Batch Number:	110261	Date Extracted:	11-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	12-Feb-11
Directory:	111PAH.MS20\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	6.08	0.20	99	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	7.50	0.43	96	UM
Pyrene	129-00-0	7.80	0.35	97	UM
Benzo[a]anthracene	56-55-3	9.52	0.27	91	UM
Chrysene	218-01-9	9.57	0.30	96	UM
Benzo[b]fluoranthene	205-99-2	11.07	0.51	97	UM
Benzo[k]fluoranthene	207-08-9	11.11	0.18	97	UM
Benzo[a]pyrene	50-32-8	11.51	0.28	99	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.92	0.35	94	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	13.28	0.32	99	UM
Total (USEPA16) PAHs	-	-	< 3.82	-	Ν

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	105
Acenaphthene-d10	104
Phenanthrene-d10	103
Chrysene-d12	107
Perylene-d12	105

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	97

Concentrations are reported on a dry weight basis.

Customer and Site Details:	Soil Mechanics: Machyny's Moun	d	
Sample Details:	TP8 D 6 2.00	Job Number:	S11_0798M
LIMS ID Number:	CL1103750	Date Booked in:	04-Feb-11
QC Batch Number:	110261	Date Extracted:	11-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	12-Feb-11
Directory:	111PAH.MS20\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.12	-	UM
Acenaphthylene	208-96-8	-	< 0.12	-	U
Acenaphthene	83-32-9	-	< 0.12	-	UM
Fluorene	86-73-7	-	< 0.12	-	UM
Phenanthrene	85-01-8	6.08	0.90	100	UM
Anthracene	120-12-7	6.14	0.21	96	U
Fluoranthene	206-44-0	7.50	1.08	97	UM
Pyrene	129-00-0	7.80	0.84	96	UM
Benzo[a]anthracene	56-55-3	9.52	0.47	95	UM
Chrysene	218-01-9	9.57	0.49	97	UM
Benzo[b]fluoranthene	205-99-2	11.07	0.46	96	UM
Benzo[k]fluoranthene	207-08-9	11.11	0.18	95	UM
Benzo[a]pyrene	50-32-8	11.51	0.33	98	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.92	0.19	100	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.12	-	UM
Benzo[g,h,i]perylene	191-24-2	13.27	0.18	96	UM
Total (USEPA16) PAHs	-	-	< 5.91	-	Ν

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	102
Acenaphthene-d10	108
Phenanthrene-d10	101
Chrysene-d12	105
Perylene-d12	103

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	92
Terphenyl-d14	100

Concentrations are reported on a dry weight basis.

Customer and Site Details:	Soil Mechanics: Machyny's Mou	nd	
Sample Details:	TP10 D 1 0.30	Job Number:	S11_0798M
LIMS ID Number:	CL1103752	Date Booked in:	04-Feb-11
QC Batch Number:	110261	Date Extracted:	11-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	12-Feb-11
Directory:	111PAH.MS20\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	-	< 0.09	-	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	-	< 0.09	-	UM
Pyrene	129-00-0	-	< 0.09	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.09	-	UM
Chrysene	218-01-9	-	< 0.09	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.09	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.09	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Total (USEPA16) PAHs	-	-	< 1.51	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	104
Acenaphthene-d10	103
Phenanthrene-d10	105
Chrysene-d12	98
Perylene-d12	91

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method: Accreditation code:	Soil Mechanics: Machyny's Mound S11_0798M 110301 0217PCB.GC8 Ultrasonic N				Matrix: Date Booked Date Extracte Date Analyse	ed:	SOIL 04-Feb-11 17-Feb-11 17-Feb-11		
				Con	centration,	(µg/kg)			
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180	
* CL1103738	TP1 D 5 1.00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
* CL1103742	TP4 D 1 0.20	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	
* CL1103751	TP9 D 6 1.50	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method: Accreditation code:	Soil Mechanics: Machyny's S11_0798M 110301 0217PCB.GC8 Ultrasonic N	Mound					Matrix: Date Book Date Extra Date Analy	cted:	04-Fo 17-Fo	oil eb-11 eb-11 eb-11			
						Conce	ntration,	(µg/kg)					
Sample ID	Customer ID	PCB 81	PCB 77	PCB 123	PCB 118	PCB 114	PCB 105	PCB 126	PCB 167	PCB 156	PCB 157	PCB 169	PCB 189
* CL1103738	TP1 D 5 1.00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
* CL1103742	TP4 D 1 0.20	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1
* CL1103751	TP9 D 6 1.50	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4	<5.4

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP1 D 5 1.00 CL1103738 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 14-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 14SVOC.GC11\	0214_CCC2	QC Batch Number: Multiplier: Dilution Factor: DGPC (Y/N)	269 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 2.0	-	Ν	2,4-Dinitrophenol	51-28-5 *	-	< 1.0	-	N
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	Ν	Dibenzofuran	132-64-9	-	< 0.6	-	N
2-Chlorophenol	95-57-8	-	< 2.0	-	N	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	N	Fluorene	86-73-7	-	< 0.2	-	N
Benzyl alcohol	100-51-6	-	< 0.6	-	N	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	Ν	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	Ν	4-Nitroaniline	100-01-6	-	< 0.6	-	N
Hexachloroethane	67-72-1	-	< 0.6	-	Ν	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	Ν	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 2.0	-	Ν	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	98-95-3	-	< 0.6	-	Ν	Pentachlorophenol	87-86-5	-	< 6.0	-	N
Isophorone	78-59-1	-	< 0.6	-	Ν	Phenanthrene	85-01-8	10.70	0.5	100	N
2-Nitrophenol	88-75-5	-	< 2.0	-	Ν	Anthracene	120-12-7	-	< 0.2	-	N
2,4-Dimethylphenol	105-67-9	-	< 2.0	-	N	Di-n-butylphthalate	84-74-2	-	< 0.6	-	N
Benzoic Acid	65-85-0 *	-	< 12.0	-	N	Fluoranthene	206-44-0	12.52	0.5	96	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	12.86	0.4	94	N
2,4-Dichlorophenol	120-83-2	-	< 2.0	-	N	Butylbenzylphthalate	85-68-7	-	< 0.6	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.6	-	N	Benzo[a]anthracene	56-55-3	-	< 0.2	-	N
Naphthalene	91-20-3	-	< 0.2	-	Ν	Chrysene	218-01-9	-	< 0.2	-	N
4-Chlorophenol	106-48-9	-	< 2.0	-	N	3,3'-Dichlorobenzidine	91-94-1	-	< 2.0	-	N
4-Chloroaniline	106-47-8 *	-	< 0.6	-	N	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.2	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	N	Benzo[b]fluoranthene	205-99-2	16.37	0.2	73	N
2-Methylnaphthalene	91-57-6	-	< 0.2	-	N	Benzo[k]fluoranthene	207-08-9	-	< 0.2	-	N
1-Methylnaphthalene	90-12-0 77-47-4 *	-	< 0.2	-	N	Benzo[a]pyrene	50-32-8 193-39-5	-	< 0.2	-	N
Hexachlorocyclopentadiene		-	< 0.6	-	N	Indeno[1,2,3-cd]pyrene		-	-	-	N
2,4,6-Trichlorophenol	<u>88-06-2</u> 95-95-4	-	< 2.0	-	N	Dibenzo[a,h]anthracene	53-70-3	-	< 0.2	-	N
2,4,5-Trichlorophenol		-	-	-	N	Benzo[g,h,i]perylene			1012	-	N
2-Chloronaphthalene	<u>91-58-7</u> 92-52-4	-	< 0.2	-	N		"Wi" denotes that 9	6 fit has been	manually interpreted		
Biphenyl Diabeaul ether	101-84-8	-	< 0.2	-	N	Internal Standards	% Area	٦	Curre notes	% Rec	-
Diphenyl ether		-	-	-	N			_	Surrogates		-
2-Nitroaniline	88-74-4	-	< 0.6		N	1,4-Dichlorobenzene-d4	88	-	2-Fluorophenol Phenol-d5	<u> </u>	
Acenaphthylene	208-96-8	-		-	N	Naphthalene-d8	-	-		-	-
Dimethylphthalate	131-11-3	-	< 0.6	-	N	Acenaphthene-d10	90	-1	Nitrobenzene-d5	99	-
2,6-Dinitrotoluene	<u>606-20-2</u> 83-32-9	-	< 0.6		N	Phenanthrene-d10	<u>91</u> 88	-	2-Fluorobiphenyl 2,4,6-Tribromophenol	<u> </u>	
Acenaphthene		-	-		N	Chrysene-d12	88	-	, ,	107	
3-Nitroaniline	99-09-2	-	< 0.6	-	N	Perylene-d12	85	1	Terphenyl-d14	107	

This analysis was conducted on an 'As Recieved' basis.

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP1 D 8 3.00 CL1103739 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 14-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 14SVOC.GC11\	0214_CCC2	QC Batch Number: Multiplier: Dilution Factor: .DGPC (Y/N)	269 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 2.0	-	Ν	2,4-Dinitrophenol	51-28-5 *	-	< 1.0	-	Ν
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	N	Dibenzofuran	132-64-9	-	< 0.6	-	N
2-Chlorophenol	95-57-8	-	< 2.0	-	Ν	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	Ν	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	N	Fluorene	86-73-7	9.35	0.7	92	N
Benzyl alcohol	100-51-6	-	< 0.6	-	N	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	N	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	N	4-Nitroaniline	100-01-6	-	< 0.6	-	N
Hexachloroethane	67-72-1	-	< 0.6	-	N	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 2.0	-	N	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	<u>98-95-3</u> 78-59-1	-	< 0.6	-	N	Pentachlorophenol	87-86-5 85-01-8	-	< 6.0	-	N
Isophorone	88-75-5	-	< 0.6 < 2.0	-	N	Phenanthrene		10.71 10.78	6.8	<u>100</u> 94	N
2-Nitrophenol 2,4-Dimethylphenol	105-67-9	-	< 2.0	-	N	Anthracene Di-n-butylphthalate	<u>120-12-7</u> 84-74-2	-	1.6	- 94	N
Benzoic Acid	65-85-0 *	-	< 11.0		N	Fluoranthene	206-44-0	- 12.54	12.0	- 95	
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	12.54	9.1	95	N
2,4-Dichlorophenol	120-83-2	-	< 2.0		N	Butylbenzylphthalate	85-68-7	12.00	< 0.6	- 94	N
1.2.4-Trichlorobenzene	120-82-1		< 0.6	_	N	Benzo[a]anthracene	56-55-3	14.78	4.0	94	N
Naphthalene	91-20-3	6.72	0.3	97	N	Chrysene	218-01-9	14.78	4.6	94	N
4-Chlorophenol	106-48-9	-	< 2.0		N	3.3'-Dichlorobenzidine	91-94-1	-	< 2.0	-	N
4-Chloroaniline	106-47-8 *	-	< 0.6	-	N	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.2	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	N	Benzo[b]fluoranthene	205-99-2	16.39	4.7	74	N
2-Methylnaphthalene	91-57-6	7.43	0.4	98	N	Benzo[k]fluoranthene	207-08-9	16.42	1.8	70	N
1-Methylnaphthalene	90-12-0	7.54	0.3	96	N	Benzo[a]pyrene	50-32-8	16.83	3.9	98	N
Hexachlorocyclopentadiene	77-47-4 *	-	< 0.6	-	N	Indeno[1,2,3-cd]pyrene	193-39-5	18.22	2.4	89	N
2,4,6-Trichlorophenol	88-06-2	-	< 2.0	-	N	Dibenzo[a,h]anthracene	53-70-3	18.24	0.6	90	N
2,4,5-Trichlorophenol	95-95-4	-	< 2.0	-	N	Benzo[g,h,i]perylene	191-24-2	18.53	2.1	96	N
2-Chloronaphthalene	91-58-7	-	< 0.2	-	N		"M" denotes that %	6 fit has been	manually interpreted	•	
Biphenyl	92-52-4	-	< 0.2	-	N						
Diphenyl ether	101-84-8	-	< 0.2	-	N	Internal Standards	% Area]	Surrogates	% Rec	
2-Nitroaniline	88-74-4	-	< 0.6	-	N	1,4-Dichlorobenzene-d4	85]	2-Fluorophenol	102	
Acenaphthylene	208-96-8	8.46	0.7	98	N	Naphthalene-d8	86]	Phenol-d5	101	7
Dimethylphthalate	131-11-3	-	< 0.6	-	N	Acenaphthene-d10	87]	Nitrobenzene-d5	95	
2,6-Dinitrotoluene	606-20-2	-	< 0.6	-	N	Phenanthrene-d10	89]	2-Fluorobiphenyl	99	
Acenaphthene	83-32-9	8.67	0.3	90	N	Chrysene-d12	82]	2,4,6-Tribromophenol	97	
3-Nitroaniline	99-09-2	-	< 0.6	-	N	Perylene-d12	80]	Terphenyl-d14	104	

This analysis was conducted on an 'As Recieved' basis.

				Accr	edited?:	Νο					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP4 D 1 0.20 CL1103742 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 14-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 14SVOC.GC11\	0214_CCC2	QC Batch Number: Multiplier: Dilution Factor: .DGPC (Y/N)	269 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 2.0	-	Ν	2,4-Dinitrophenol	51-28-5 *	-	< 1.0	-	Ν
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	Ν	Dibenzofuran	132-64-9	-	< 0.6	-	N
2-Chlorophenol	95-57-8	-	< 2.0	-	N	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	Ν	Fluorene	86-73-7	-	< 0.2	-	N
Benzyl alcohol	100-51-6	-	< 0.6	-	Ν	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	N	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	N	4-Nitroaniline	100-01-6	-	< 0.6	-	N
Hexachloroethane	67-72-1	-	< 0.6	-	N	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 2.0	-	N	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	98-95-3	-	< 0.6	-	N	Pentachlorophenol	87-86-5	-	< 6.0	-	N
Isophorone	78-59-1	-	< 0.6	-	N	Phenanthrene	85-01-8	-	< 0.2	-	N
2-Nitrophenol	88-75-5	-	< 2.0	-	N	Anthracene	120-12-7	-	< 0.2	-	N
2,4-Dimethylphenol	105-67-9	-	< 2.0	-	N	Di-n-butylphthalate	84-74-2	-	< 0.6	-	N
Benzoic Acid	65-85-0 *	-	< 11.0	-	N	Fluoranthene	206-44-0	-	< 0.2	-	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	-	< 0.2	-	N
2,4-Dichlorophenol	120-83-2	-	< 2.0	-	N	Butylbenzylphthalate	85-68-7	-	< 0.6	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.6	-	N	Benzo[a]anthracene	56-55-3	-	< 0.2	-	N
Naphthalene	91-20-3	-	< 0.2	-	N	Chrysene	218-01-9	-	< 0.2	-	N
4-Chlorophenol	106-48-9	-	< 2.0	-	N	3,3'-Dichlorobenzidine	91-94-1	-	< 2.0	-	N
4-Chloroaniline	106-47-8 *	-	< 0.6	-	Ν	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.2	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	N	Benzo[b]fluoranthene	205-99-2	-	< 0.2	-	N
2-Methylnaphthalene	91-57-6	-	< 0.2	-	Ν	Benzo[k]fluoranthene	207-08-9	-	< 0.2	-	N
1-Methylnaphthalene	90-12-0	-	< 0.2	-	Ν	Benzo[a]pyrene	50-32-8	-	< 0.2	-	N
Hexachlorocyclopentadiene	77-47-4 *	-	< 0.6	-	Ν	Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.2	-	N
2,4,6-Trichlorophenol	88-06-2	-	< 2.0	-	N	Dibenzo[a,h]anthracene	53-70-3	-	< 0.2	-	N
2,4,5-Trichlorophenol	95-95-4	-	< 2.0	-	Ν	Benzo[g,h,i]perylene	191-24-2	-	< 0.2	-	Ν
2-Chloronaphthalene	91-58-7	-	< 0.2	-	N		"M" denotes that %	6 fit has been	manually interpreted		
Biphenyl	92-52-4	-	< 0.2	-	N			-			_
Diphenyl ether	101-84-8	-	< 0.2	-	Ν	Internal Standards	% Area		Surrogates	% Rec	
2-Nitroaniline	88-74-4	-	< 0.6	-	Ν	1,4-Dichlorobenzene-d4	87	1	2-Fluorophenol	100	
Acenaphthylene	208-96-8	-	< 0.2	-	Ν	Naphthalene-d8	87	1	Phenol-d5	101	
Dimethylphthalate	131-11-3	-	< 0.6	-	Ν	Acenaphthene-d10	89	1	Nitrobenzene-d5	92	
2,6-Dinitrotoluene	606-20-2	-	< 0.6	-	Ν	Phenanthrene-d10	92	1	2-Fluorobiphenyl	95	
Acenaphthene	83-32-9	-	< 0.2	-	Ν	Chrysene-d12	89	1	2,4,6-Tribromophenol	92	
3-Nitroaniline	99-09-2	-	< 0.6	-	Ν	Perylene-d12	82		Terphenyl-d14	103	

This analysis was conducted on an 'As Recieved' basis.

				Accr	edited?:	Νο					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP4 D 7 2.00 CL1103743 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 14-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 14SVOC.GC11\	0214_CCC2	QC Batch Number: Multiplier: Dilution Factor: .D GPC (Y/N)	269 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 2.0	-	Ν	2,4-Dinitrophenol	51-28-5 *	-	< 1.0	-	Ν
bis(2-Chloroethyl)ether	111-44-4	-	< 0.5	-	N	Dibenzofuran	132-64-9	-	< 0.5	-	Ν
2-Chlorophenol	95-57-8	-	< 2.0	-	N	4-Nitrophenol	100-02-7	-	< 5.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.5	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.5	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.5	-	N	Fluorene	86-73-7	-	< 0.2	-	N
Benzyl alcohol	100-51-6	-	< 0.5	-	Ν	Diethylphthalate	84-66-2	-	< 0.5	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.5	-	Ν	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.5	-	N
2-Methylphenol	95-48-7	-	< 0.5	-	N	4,6-Dinitro-2-methylphenol	534-52-1	-	< 5.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.5	-	Ν	4-Nitroaniline	100-01-6	-	< 0.5	-	N
Hexachloroethane	67-72-1	-	< 0.5	-	Ν	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.5	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.5	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 0.5	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 2.0	-	Ν	Hexachlorobenzene	118-74-1	-	< 0.5	-	N
Nitrobenzene	98-95-3	-	< 0.5	-	N	Pentachlorophenol	87-86-5	-	< 5.0	-	N
Isophorone	78-59-1	-	< 0.5	-	N	Phenanthrene	85-01-8	-	< 0.2	-	N
2-Nitrophenol	88-75-5	-	< 2.0	-	N	Anthracene	120-12-7	-	< 0.2	-	N
2,4-Dimethylphenol	105-67-9	-	< 2.0	-	N	Di-n-butylphthalate	84-74-2	-	< 0.5	-	N
Benzoic Acid	65-85-0 *	-	< 11.0	-	N	Fluoranthene	206-44-0	12.52	0.4	96	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.5	-	N	Pyrene	129-00-0	12.86	0.4	95	N
2,4-Dichlorophenol	120-83-2	-	< 2.0	-	N	Butylbenzylphthalate	85-68-7	-	< 0.5	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.5	-	N	Benzo[a]anthracene	56-55-3	14.77	0.2	81	N
Naphthalene	91-20-3	-	< 0.2	-	N	Chrysene	218-01-9	14.82	0.3	71	N
4-Chlorophenol	106-48-9 106-47-8 *	-	< 2.0	-	N	3,3'-Dichlorobenzidine	<u>91-94-1</u> 117-81-7	-	< 2.0	-	N
4-Chloroaniline		-	< 0.5 < 0.5	-	N	bis(2-Ethylhexyl)phthalate					N
Hexachlorobutadiene	87-68-3 59-50-7	-	< 0.5		N	Di-n-octylphthalate Benzolblfluoranthene	<u>117-84-0</u> 205-99-2	- 16.37	< 0.2	- 74	N
4-Chloro-3-methylphenol			< 0.5	-	N	Benzo[b]nuoranthene	205-99-2	16.37	< 0.2		N
2-Methylnaphthalene 1-Methylnaphthalene	<u>91-57-6</u> 90-12-0	-	< 0.2	-	N	Benzo[k]nuoranmene Benzo[a]pyrene	50-32-8	- 16.81	0.3	- 96	N
Hexachlorocyclopentadiene	77-47-4 *	-	< 0.2	-	N	Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.2	- 90	N
2,4,6-Trichlorophenol	88-06-2	-	< 2.0		N	Dibenzo[a,h]anthracene	53-70-3	-	< 0.2		
2,4,5-Trichlorophenol	95-95-4	-	< 2.0		N	Benzo[g,h,i]perylene	191-24-2	-	< 0.2		N
2-Chloronaphthalene	91-58-7	-	< 0.2		N	Denzo[g,n,i]peryiene			manually interpreted	-	IN
Biphenvl	92-52-4	-	< 0.2		N				manually interpreted		
Diphenyl ether	101-84-8	-	< 0.2		N	Internal Standards	% Area	٦	Surrogates	% Rec	٦
2-Nitroaniline	88-74-4	-	< 0.5		N	1.4-Dichlorobenzene-d4	90	_	2-Fluorophenol	103	-
Acenaphthylene	208-96-8	-	< 0.2		N	Naphthalene-d8	90	1	Phenol-d5	103	-
Dimethylphthalate	131-11-3	-	< 0.2		N	Acenaphthene-d10	95	-	Nitrobenzene-d5	94	-
2,6-Dinitrotoluene	606-20-2	-	< 0.5		N	Phenanthrene-d10	97	1	2-Fluorobiphenyl	95	-
Acenaphthene	83-32-9	-	< 0.2		N	Chrysene-d12	96	1	2,4,6-Tribromophenol	93	-
3-Nitroaniline	99-09-2	-	< 0.2	-	N	Perylene-d12	91	1	Terphenyl-d14	102	-
J-Milloannine	33-09-Z	-	< 0.5	-	IN		31	1	reiphenyi-u14	102	

This analysis was conducted on an 'As Recieved' basis.

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP5 D 3 0.60 CL1103745 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 14-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 14SVOC.GC11\	0214_CCC2	QC Batch Number: Multiplier: Dilution Factor: .DGPC (Y/N)	269 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 2.0	-	Ν	2,4-Dinitrophenol	51-28-5 *	-	< 1.0	-	Ν
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	N	Dibenzofuran	132-64-9	-	< 0.6	-	Ν
2-Chlorophenol	95-57-8	-	< 2.0	-	N	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	N	Fluorene	86-73-7	-	< 0.2	-	N
Benzyl alcohol	100-51-6	-	< 0.6	-	N	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	Ν	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	Ν	4-Nitroaniline	100-01-6	-	< 0.6	-	N
Hexachloroethane	67-72-1	-	< 0.6	-	N	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 2.0	-	Ν	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	98-95-3	-	< 0.6	-	N	Pentachlorophenol	87-86-5	-	< 6.0	-	N
Isophorone	78-59-1	-	< 0.6	-	N	Phenanthrene	85-01-8	-	< 0.2	-	N
2-Nitrophenol	88-75-5	-	< 2.0	-	N	Anthracene	120-12-7	-	< 0.2	-	N
2,4-Dimethylphenol	105-67-9	-	< 2.0	-	N	Di-n-butylphthalate	84-74-2	-	< 0.6	-	N
Benzoic Acid	65-85-0 *	-	< 11.0	-	N	Fluoranthene	206-44-0	-	< 0.2	-	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	-	< 0.2	-	N
2,4-Dichlorophenol	120-83-2	-	< 2.0	-	N	Butylbenzylphthalate	85-68-7	-	< 0.6	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.6	-	N	Benzo[a]anthracene	56-55-3	-	< 0.2	-	N
Naphthalene	91-20-3	-	< 0.2	-	N	Chrysene	218-01-9	-	< 0.2	-	N
4-Chlorophenol	106-48-9 106-47-8 *	-	< 2.0	-	N	3,3'-Dichlorobenzidine	<u>91-94-1</u> 117-81-7	-	< 2.0	-	N
4-Chloroaniline		-	< 0.6	-	N	bis(2-Ethylhexyl)phthalate	-	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.2		N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	N	Benzo[b]fluoranthene	205-99-2	16.37		74	N
2-Methylnaphthalene	<u>91-57-6</u> 90-12-0	-	< 0.2	-	N	Benzo[k]fluoranthene	207-08-9 50-32-8	-	< 0.2		N
1-Methylnaphthalene Hexachlorocyclopentadiene	77-47-4 *		< 0.2		N	Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	193-39-5		< 0.2		N
2,4,6-Trichlorophenol	88-06-2	-	< 2.0	-	N	Dibenzo[a,h]anthracene	53-70-3	-	< 0.2	-	N
2,4,6-Trichlorophenol	95-95-4	-	< 2.0	-	N	Benzo[g,h,i]perylene	191-24-2	-	< 0.2	-	N
2,4,5-meniorophenoi	95-95-4	-	< 0.2	-	N	Benzolg,n,ijperviene			manually interpreted	-	N
Biphenvl	92-52-4		< 0.2		N		IVI denotes that 7	6 III has been	manually interpreted		
Diphenyl ether	101-84-8	-	< 0.2	-	N	Internal Standards	% Area	7	Surrogates	% Rec	-
2-Nitroaniline	88-74-4		< 0.2			1.4-Dichlorobenzene-d4	87	_	2-Fluorophenol	105	_
Acenaphthylene	208-96-8	-	< 0.6	-	N	Naphthalene-d8	87	-	Phenol-d5	105	
Dimethylphthalate	131-11-3		< 0.2		N	Acenaphthene-d8	87	-	Nitrobenzene-d5	95	
2,6-Dinitrotoluene	606-20-2	-	< 0.6	-		Phenanthrene-d10	92	-	2-Fluorobiphenyl	95	
Acenaphthene	83-32-9	-	< 0.6	-	N	Chrysene-d12	92	-	2,4,6-Tribromophenol	98	
	99-09-2	-	< 0.2			Perylene-d12	87	-	, ,	104	
3-Nitroaniline	33-03-2	-	< 0.0	-	N	reiyielle-ulz	٥/		Terphenyl-d14	104	

This analysis was conducted on an 'As Recieved' basis.

Sample Details: UNE D Number: TYD p 1 via S1 (1) 793/M Date Booked in: Date Analysed: 0.4 Feb 11 1 4 Feb 11 DK Unscannel Diversity/Quant File: Unscannel SUSOB Unscannel Diversity/Quant File: Unscannel SUSOB Unscannel Diversity/Quant File: Diversity/Quant File: <thdiversity file:<="" quant="" th=""> Diversity/Quant</thdiversity>					Accr	edited?:	No					
med mg/kg code mg/kg code mg/kg code mg/kg code mg/kg code bit2 < 2.0 $< N$ < 0.6 $< N$ < 0.6 $< N$ < 0.0	Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	TP6 D 6 1.50 CL1103747	yny's Mound	Date Extracted:	13-Feb-11		Ext Method: Operator:	Ultrasonic SO/DMB	0214_CCC2	Multiplier: Dilution Factor:	0.2 1	
bisg2-Chorosphrighter 111:44-4 -	Target Compounds	CAS #			% Fit		Target Compounds	CAS #	R.T.		% Fit	Accr. code
2 Chitopphand 99-57-8 - 4-Nitophanol 100-02-7 - 6.0 - N 1,4-Dichorobenzane 541-73-1 - 0.6 - N Plothorobenzane 100-46-7 - 0.6 - N 1,4-Dichorobenzane 96-50-1 - 0.6 - N Plothorobenzane 86-73-7 - 0.6 - N 1,2-Dichorobenzane 95-50-1 - 0.6 - N 4-Dichorobenzane 86-73-7 - 0.6 - N Veltorobaccontrophylether 108-60-1 - 0.6 - N 4-Dichorobenzane 700-057-23 - 0.6 - N Veltorobaccontrophylether 108-60-1 - 0.6 - N 4-Dichorophylethylether 100-01-6 - 0.6 - N Veltorobaccontrophylether 108-86-7 - 0.6 - N Hexaconhine 100-01-6 - 0.6	Phenol	108-95-2	-	< 2.0	-	Ν	2,4-Dinitrophenol		-		-	Ν
13-De/nordemizene 641-73-1 - < 0.6			-		-	Ν			-		-	N
14-Dichlorobanzane 106-46-7 - 0.6 - N 12-Dichlorobanzane 955-50-1 - 0.6 - N 12-Dichlorobanzane 956-50-1 - 0.6 - N Nexachiorostane 067-72-1 - <0.6			-		-	Ν			-		-	N
Benzy lachol 100-51-6 - 0.6 - N 2-Meltylphenol 95-50-1 - <0.6	1		-		-				-		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1		-		-				-		-	N
2Adettyppenol 95-48-7 - 4.6-Dimitro-2-methyphenol 534-52-11 - < 6.0 - N HeaxAhbroethane 67-72-1 - <			-		-				-		-	
bis/2-Chloroshopropyleher 108-60-1 - <	-		-		-				-		-	
Hasachtoroethane67.72.1-< 0.6+NNiltrosodiperylamine86-30-6.*-<<0.6-N3.8 4.Methylphenol109.39.4/106.44.5-< 0.6			-		-						-	
$\begin{split} N-NIIros-dim-propylamine 01-65-3 . < 0.6 . N \\ NIIrobenzene 08-30+06-44-5 . < 0.6 . N \\ NIIrobenzene 09-95-3 . < 0.6 . N \\ NIIrobenzene 09-95-3 . < 0.6 . N \\ NIIrobenzene 09-95-3 . < 0.6 . N \\ Hexachtorobenzene 118-74-1 . < 0.6 . N \\ Arthracene 120-12-7 10.79 0.6 . N \\ Arthracene 120-12-7 . N \\ Arthracene 117-14-7 . N \\ Ar$					-				-		-	
3: 8.4 Methylphenol 108-39-4/106-44.5 - < 2.0		_							-		-	
Nitrobersone 98-95-3 - < 0.6 - N Pentachlorophenol 87-86-5 - < 6.0 - N 2-Nitrophenol 88-75-5 - < 0.6			-		-				-		-	
isoptione 78-59-1 - < N Phenanthrene 85-01-8 10.71 1.7 99 N 2.4-Dimethylphenol 105-67-9 - <.2.0			-	-	-				-		-	
2-Nitrophenol 88-75-5 - 2.0 N Anthracene 120-12-7 10.79 0.6 98 N 2.4-Dimethylphenol 105-67-9 - 2.0 N N Din-butylphtalate 84-74-2 - <0.6			-		-				-			
2.4-Dimethylphenol 106-67-9 - < 2.0					-							
Benzoic Acid 65-85-0* - < < 12.0 N N Denzoic Acid 65-85-0* - < 2.0												
bis(2-Chlorophenol 111-91-1 - < < N 2,4-Dichlorophenol 120-83-2 - <2.0				-								
2.4-Dichlorophenol 120-83-2 - < 2.0												
1,2,4-Trichlorobenzene 120-82-1 - < 0.6									12.07			
Naphthalene 91-20-3 - < 0.2 - N 4-Chiorophenol 106-47-8* - < 0.6				-	-				- 14.79			
4-Chlorophenol 106-48-9 - < 2.0					-				-			
4-Chloroaniline 106-47-8* - < 0.6												
Hexachlorobutadiene 87-68-3 - < 0.6 - N 4-Chloro-3-methylphenol 59-50-7 - < 0.6												
4-Chloro-3-methylphenol 59-50-7 - < 0.6								-				
2-Methylnaphthalene 91-57-6 - < 0.2 - N 1-Methylnaphthalene 90-12-0 - < 0.2			-						16.39		75	
1-Methylnaphthalene 90-12-0 - < 0.2 - N Hexachlorocyclopentadiene 77-47-4* - < 0.6			-		-						-	
Hexachlorocyclopentadiene 77-47-4* - < 0.6 - N 2,4,6-Trichlorophenol 88-06-2 - < 2.0			-		-							
2,4,6-Trichlorophenol 88-06-2 - N 2,4,6-Trichlorophenol 95-95-4 - <2.0			-		-						-	
2,4,5-Trichlorophenol 95-95-4 - < < 2.0 - N 2-Chloronaphthalene 91-58-7 - < 0.2			-		-							
2-Chloronaphthalene91-58-7-< < 0.2-NBiphenyl92-52-4-< < 0.2	2,4,5-Trichlorophenol		-		-							
Biphenyl 92-52-4 - < 0.2 - N Diphenyl ether 101-84-8 - < 0.2	2-Chloronaphthalene	91-58-7	-	< 0.2	-	N		"M" denotes that %	6 fit has been	manually interpreted	•	
2-Nitroaniline 88-74-4 - < 0.6 - N Acenaphthylene 208-96-8 - < 0.2	Biphenyl	92-52-4	-	< 0.2	-	N						
Acenaphthylene 208-96-8 - < 0.2 - N Naphthalene-d8 94 Phenol-d5 105 Dimethylphthalate 131-11-3 - < 0.6	Diphenyl ether	101-84-8	-	< 0.2	-	N	Internal Standards	% Area		Surrogates	% Rec	
Dimethylphthalate 131-11-3 - < 0.6 - N Acenaphthene-d10 95 Nitrobenzene-d5 96 2,6-Dinitrotoluene 606-20-2 - < 0.6	2-Nitroaniline	88-74-4	-	< 0.6	-	Ν	1,4-Dichlorobenzene-d4	91		2-Fluorophenol	107	
Dimethylphthalate 131-11-3 - < 0.6 - N Acenaphthene-d10 95 Nitrobenzene-d5 96 2,6-Dinitrotoluene 606-20-2 - < 0.6	Acenaphthylene	208-96-8	-	< 0.2	-	N	Naphthalene-d8	94	1	Phenol-d5	105	
Acenaphthene 83-32-9 - < 0.2 - N Chrysene-d12 98 2,4,6-Tribromophenol 97	Dimethylphthalate	131-11-3	-	< 0.6	-	N	Acenaphthene-d10	95	1	Nitrobenzene-d5	96	
	2,6-Dinitrotoluene	606-20-2	-	< 0.6	-	N	Phenanthrene-d10	99	1	2-Fluorobiphenyl	99	
3-Nitroaniline 99-09-2 - < 0.6 - N Perylene-d12 95 Terphenyl-d14 103	Acenaphthene		-	< 0.2	-	N	Chrysene-d12	98		2,4,6-Tribromophenol		
	3-Nitroaniline	99-09-2	-	< 0.6	-	N	Perylene-d12	95]	Terphenyl-d14	103	

This analysis was conducted on an 'As Recieved' basis.

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP7 D 6 2.00 CL1103748 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 14-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 14SVOC.GC11\	0214_CCC2	QC Batch Number: Multiplier: Dilution Factor: .DGPC (Y/N)	269 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 3.0	-	N	2,4-Dinitrophenol	51-28-5 *	-	< 1.0	-	Ν
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	N	Dibenzofuran	132-64-9	-	< 0.6	-	Ν
2-Chlorophenol	95-57-8	-	< 3.0	-	N	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	N	Fluorene	86-73-7	-	< 0.3	-	N
Benzyl alcohol	100-51-6	-	< 0.6	-	N	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	N	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	Ν
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	Ν	4-Nitroaniline	100-01-6	-	< 0.6	-	Ν
Hexachloroethane	67-72-1	-	< 0.6	-	N	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	Ν	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 3.0	-	N	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	98-95-3	-	< 0.6	-	N	Pentachlorophenol	87-86-5	-	< 6.0	-	N
Isophorone	78-59-1	-	< 0.6	-	N	Phenanthrene	85-01-8	10.71	0.6	99	N
2-Nitrophenol	88-75-5	-	< 3.0	-	N	Anthracene	120-12-7	10.78	0.4	98	N
2,4-Dimethylphenol	105-67-9	-	< 3.0	-	N	Di-n-butylphthalate	84-74-2	-	< 0.6	-	N
Benzoic Acid	65-85-0 *	-	< 13.0	-	N	Fluoranthene	206-44-0	12.54	9.3	96	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	12.88	7.9	96	N
2,4-Dichlorophenol	120-83-2	-	< 3.0	-	N	Butylbenzylphthalate	85-68-7	-	< 0.6	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.6	-	N	Benzo[a]anthracene	56-55-3	14.78	4.0	87	N
Naphthalene	91-20-3	-	< 0.3	-	N	Chrysene	218-01-9	14.84	2.4	89	N
4-Chlorophenol	106-48-9	-	< 3.0	-	N	3,3'-Dichlorobenzidine	91-94-1	-	< 3.0	-	N
4-Chloroaniline	106-47-8 *	-	< 0.6	-	N	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.3	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	N	Benzo[b]fluoranthene	205-99-2	16.39	5.2	74	N
2-Methylnaphthalene	91-57-6	-	< 0.3		N	Benzo[k]fluoranthene	207-08-9	16.43 16.83	1.9	70	N
1-Methylnaphthalene Hexachlorocyclopentadiene	90-12-0	-	< 0.3	-	N	Benzo[a]pyrene Indeno[1,2,3-cd]pyrene	50-32-8 193-39-5	16.83	3.5	95 89	N
	88-06-2	-		-	N		53-70-3	18.22		94	N
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	95-95-4	-	< 3.0 < 3.0		N	Dibenzo[a,h]anthracene	191-24-2	18.24	0.6	94	N
2,4,5-meniorophenoi	95-95-4	-	< 0.3		N	Benzo[g,h,i]perylene	-		manually interpreted	95	Ν
Biphenyl	91-56-7	-	< 0.3		N		IVI denotes that 7	o iit nas been	manually interpreted		
Diphenyl ether	101-84-8	-	< 0.3	-	N	Internal Standards	% Area	Т	Surragataa	% Rec	-
2-Nitroaniline	88-74-4	-	< 0.6			1.4-Dichlorobenzene-d4	90	-	Surrogates 2-Fluorophenol	104	_
Acenaphthylene	208-96-8	-	< 0.8	-	N	Naphthalene-d8	90	-1	2-Fluorophenoi Phenol-d5	104	-
		-	< 0.3			Acenaphthene-d8	93	-1	Nitrobenzene-d5	94	-
Dimethylphthalate 2,6-Dinitrotoluene	<u>131-11-3</u> 606-20-2	-	< 0.6		N	Phenanthrene-d10	93	-1	2-Fluorobiphenyl	94	-
Acenaphthene	83-32-9	-	< 0.6		N	Chrysene-d12	101	-1	2,4,6-Tribromophenol	89	-
	99-09-2	-	< 0.6			,	101	-	,,	98	
3-Nitroaniline	33-03-2	-	< 0.0	-	N	Perylene-d12	100	1	Terphenyl-d14	98	

This analysis was conducted on an 'As Recieved' basis.

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP8 D 2 0.50 CL1103749 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 16-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 15SVOC.GC11\	0215_CCC2	QC Batch Number: Multiplier: Dilution Factor: .DGPC (Y/N)	269 2 10 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 23.0	-	Ν	2,4-Dinitrophenol	51-28-5 *	-	< 12.0	-	N
bis(2-Chloroethyl)ether	111-44-4	-	< 6.0	-	Ν	Dibenzofuran	132-64-9	-	< 6.0	-	N
2-Chlorophenol	95-57-8	-	< 23.0	-	Ν	4-Nitrophenol	100-02-7	-	< 58.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 6.0	-	Ν	2,4-Dinitrotoluene	121-14-2	-	< 6.0	-	N
1,4-Dichlorobenzene	106-46-7	-	< 6.0	-	Ν	Fluorene	86-73-7	-	< 2.0	-	Ν
Benzyl alcohol	100-51-6	-	< 6.0	-	N	Diethylphthalate	84-66-2	-	< 6.0	-	Ν
1,2-Dichlorobenzene	95-50-1	-	< 6.0	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 6.0	-	N
2-Methylphenol	95-48-7	-	< 6.0	-	N	4,6-Dinitro-2-methylphenol	534-52-1	-	< 58.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 6.0	-	Ν	4-Nitroaniline	100-01-6	-	< 6.0	-	N
Hexachloroethane	67-72-1	-	< 6.0	-	Ν	N-Nitrosodiphenylamine	86-30-6 *	-	< 6.0	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 6.0	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 6.0	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 23.0	-	N	Hexachlorobenzene	118-74-1	-	< 6.0	-	N
Nitrobenzene	98-95-3	-	< 6.0	-	N	Pentachlorophenol	87-86-5	-	< 58.0	-	N
Isophorone	78-59-1	-	< 6.0	-	N	Phenanthrene	85-01-8	10.65	9.0	99	N
2-Nitrophenol	88-75-5	-	< 23.0	-	N	Anthracene	120-12-7	-	< 2.0	-	N
2,4-Dimethylphenol	105-67-9	-	< 23.0	-	N	Di-n-butylphthalate	84-74-2	-	< 6.0	-	N
Benzoic Acid	65-85-0 *	-	< 117.0	-	N	Fluoranthene	206-44-0	12.45	13.4	96	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 6.0	-	N	Pyrene Butylbenzylphthalate	129-00-0	12.80	<u>9.5</u> < 6.0	92	N
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	<u>120-83-2</u> 120-82-1	-	< 23.0 < 6.0		N		85-68-7 56-55-3	- 14.70	7.4	- 66	N
Naphthalene	91-20-3		< 2.0		N	Benzo[a]anthracene Chrysene	218-01-9	14.70	6.7	62	N
4-Chlorophenol	106-48-9	-	< 23.0	-	N	3,3'-Dichlorobenzidine	91-94-1	14.76	< 23.0		N
4-Chloroaniline	106-47-8 *	-	< 6.0		N	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 6.0		N
Hexachlorobutadiene	87-68-3	-	< 6.0		N	Di-n-octylphthalate	117-84-0	-	< 2.0		N
4-Chloro-3-methylphenol	59-50-7	-	< 6.0		N	Benzo[b]fluoranthene	205-99-2	16.30	9.0	73	N
2-Methylnaphthalene	91-57-6	_	< 2.0		N	Benzo[k]fluoranthene	207-08-9	16.34	3.4	69	N
1-Methylnaphthalene	90-12-0	-	< 2.0		N	Benzo[a]pyrene	50-32-8	16.74	6.1	97	N
Hexachlorocyclopentadiene	77-47-4 *	-	< 6.0		N	Indeno[1,2,3-cd]pyrene	193-39-5	18.13	4.0	97	N
2,4,6-Trichlorophenol	88-06-2	-	< 23.0	-	N	Dibenzo[a,h]anthracene	53-70-3	-	< 2.0	-	N
2,4,5-Trichlorophenol	95-95-4	-	< 23.0	-	N	Benzo[g,h,i]perylene	191-24-2	18.44	4.0	91	N
2-Chloronaphthalene	91-58-7	-	< 2.0	-	N	201120[9,1,1]001910110		-	manually interpreted	0.	
Biphenyl	92-52-4	-	< 2.0	-	N						
Diphenyl ether	101-84-8	-	< 2.0	-	N	Internal Standards	% Area	1	Surrogates	% Rec	٦
2-Nitroaniline	88-74-4	-	< 6.0	-	N	1.4-Dichlorobenzene-d4	80		2-Fluorophenol	96	
Acenaphthylene	208-96-8	-	< 2.0	-	N	Naphthalene-d8	80	1	Phenol-d5	93	
Dimethylphthalate	131-11-3	-	< 6.0	-	N	Acenaphthene-d10	81	1	Nitrobenzene-d5	89	
2,6-Dinitrotoluene	606-20-2	-	< 6.0	-	N	Phenanthrene-d10	83	1	2-Fluorobiphenyl	97	
Acenaphthene	83-32-9	-	< 2.0	-	N	Chrysene-d12	83	1	2,4,6-Tribromophenol	83	
3-Nitroaniline	99-09-2	-	< 6.0	-	N	Perylene-d12	88	1	Terphenyl-d14	103	
k								-	· · ·		

This analysis was conducted on an 'As Recieved' basis.

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Mach TP9 D 6 1.50 CL1103751 S11_0798M	yny's Mound	Date Booked in: Date Extracted: Date Analysed:	04-Feb-11 13-Feb-11 14-Feb-11		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic SO/DMB 14SVOC.GC11\	0214_CCC2	QC Batch Number: Multiplier: Dilution Factor: DGPC (Y/N)	269 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 3.0	-	Ν	2,4-Dinitrophenol	51-28-5 *	-	< 2.0	-	N
bis(2-Chloroethyl)ether	111-44-4	-	< 0.8	-	N	Dibenzofuran	132-64-9	-	< 0.8	-	N
2-Chlorophenol	95-57-8	-	< 3.0	-	N	4-Nitrophenol	100-02-7	-	< 8.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.8	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.8	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.8	-	N	Fluorene	86-73-7	-	< 0.3	-	N
Benzyl alcohol	100-51-6	-	< 0.8	-	Ν	Diethylphthalate	84-66-2	-	< 0.8	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.8	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.8	-	N
2-Methylphenol	95-48-7	-	< 0.8	-	Ν	4,6-Dinitro-2-methylphenol	534-52-1	-	< 8.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.8	-	N	4-Nitroaniline	100-01-6	-	< 0.8	-	N
Hexachloroethane	67-72-1	-	< 0.8	-	N	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.8	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.8	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 0.8	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 3.0	-	Ν	Hexachlorobenzene	118-74-1	-	< 0.8	-	N
Nitrobenzene	98-95-3	-	< 0.8	-	Ν	Pentachlorophenol	87-86-5	-	< 8.0	-	N
Isophorone	78-59-1	-	< 0.8	-	N	Phenanthrene	85-01-8	-	< 0.3	-	N
2-Nitrophenol	88-75-5	-	< 3.0	-	N	Anthracene	120-12-7	-	< 0.3	-	N
2,4-Dimethylphenol	105-67-9	-	< 3.0	-	N	Di-n-butylphthalate	84-74-2	-	< 0.8	-	N
Benzoic Acid	65-85-0 *	-	< 15.0	-	N	Fluoranthene	206-44-0	12.52	0.5	97	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.8	-	Ν	Pyrene	129-00-0	12.87	0.3	94	N
2,4-Dichlorophenol	120-83-2	-	< 3.0	-	N	Butylbenzylphthalate	85-68-7	-	< 0.8	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.8	-	N	Benzo[a]anthracene	56-55-3	-	< 0.3	-	N
Naphthalene	91-20-3	-	< 0.3	-	N	Chrysene	218-01-9	-	< 0.3	-	N
4-Chlorophenol	106-48-9	-	< 3.0	-	N	3,3'-Dichlorobenzidine	91-94-1	-	< 3.0	-	N
4-Chloroaniline	106-47-8 *	-	< 0.8	-	N	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.8	-	N
Hexachlorobutadiene	87-68-3	-	< 0.8	-	N	Di-n-octylphthalate	117-84-0	-	< 0.3	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.8	-	N	Benzo[b]fluoranthene	205-99-2	16.38	0.3	74	N
2-Methylnaphthalene	91-57-6	-	< 0.3	-	N	Benzo[k]fluoranthene	207-08-9	-	< 0.3	-	N
1-Methylnaphthalene	90-12-0	-	< 0.3	-	N	Benzo[a]pyrene	50-32-8	-	< 0.3	-	N
Hexachlorocyclopentadiene	77-47-4 *	-	< 0.8	-	N	Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.3	-	N
2,4,6-Trichlorophenol	88-06-2	-	< 3.0	-	N	Dibenzo[a,h]anthracene	53-70-3	-	< 0.3	-	N
2,4,5-Trichlorophenol	95-95-4	-	< 3.0	-	N	Benzo[g,h,i]perylene	191-24-2	-	< 0.3	-	N
2-Chloronaphthalene	91-58-7	-	< 0.3	-	N		"M" denotes that 9	% fit has been	manually interpreted		
Biphenyl	92-52-4	-	< 0.3	-	N		0/ 1	7		a n	_
Diphenyl ether	101-84-8	-	< 0.3	-	N	Internal Standards	% Area	-	Surrogates	% Rec	
2-Nitroaniline	88-74-4	-	< 0.8		N	1,4-Dichlorobenzene-d4	85	-	2-Fluorophenol	100	_
Acenaphthylene	208-96-8	-	< 0.3	-	N	Naphthalene-d8	84	4	Phenol-d5	98	_
Dimethylphthalate	131-11-3	-	< 0.8	-	N	Acenaphthene-d10	87	4	Nitrobenzene-d5	92	_
2,6-Dinitrotoluene	606-20-2	-	< 0.8	-	N	Phenanthrene-d10	93	-	2-Fluorobiphenyl	85	_
Acenaphthene	83-32-9	-	< 0.3	-	N	Chrysene-d12	98	4	2,4,6-Tribromophenol	90	_
3-Nitroaniline	99-09-2	-	< 0.8	-	N	Perylene-d12	98		Terphenyl-d14	83	

This analysis was conducted on an 'As Recieved' basis.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: M	lachyny's Mound		
Sample Details:	TP1 D 5 1.00		Job Number:	S11_0798
LIMS ID Number:	CL1103738			
			Multiplier:	0.2
Date Booked in:	04-Feb-11		Dilution Factor:	1
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	14-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr. code
1-Tricosene	018835-32-0	20.28	1.110	70	N
9-Octadecenamide, (Z)-	000301-02-0	14.07	0.524	93	N

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: N	/lachyny's Mound		
Sample Details:	TP1 D 8 3.00		Job Number:	S11_0798
LIMS ID Number:	CL1103739			
			Multiplier:	0.2
Date Booked in:	04-Feb-11		Dilution Factor:	1
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	14-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr.
Benzo[b]triphenylene	000215-58-7	18.40	0.951	86	code N
13H-Dibenzo[a,h]fluorene	000239-85-0	17.11	0.908	55	N
					-
Dibenzo[def,mno]chrysene	000191-26-4	18.69	0.870	96	N
Unidentified pak	-	18.01	0.727	-	Ν
Benzo[e]pyrene	000192-97-2	16.52	0.689	99	N
3-Chloro-11H-pyrido[3',2'-4,5]pyrrolo[3,2-c]quinoline	1000212-59-4	16.17	0.648	58	N
Thiazole, 4-(4-methylphenyl)-2-phenylamino-	093020-56-5	16.99	0.639	50	N
Unidentified pak	-	17.47	0.620	-	Ν
4H-Cyclopenta[def]phenanthrene	000203-64-5	11.60	0.592	95	Ν
Benz[j]aceanthrylene, 3-methyl-	003343-10-0	17.26	0.539	78	Ν
.betaiso-Methyl ionone	1000285-40-2	17.64	0.480	64	Ν
1,2:3,4-Dibenzopyrene	000191-30-0	20.75	0.471	91	Ν
Pyrrolo[3,2-f]quinolin-9-one, 1,2,3,5,6,7-hexamethyl-3,6-dihyd	1000302-73-3	16.66	0.461	53	Ν
Dibenzopyrene	-	20.13	0.421	98	N
Anthracene, 1-methyl-	000610-48-0	11.48	0.401	94	Ν
2-PhenyInaphthalene	035465-71-5	11.92	0.388	95	Ν
Dibenzo(a,c)fluoren-13-one	063041-47-4	17.73	0.369	87	N
Dibenzopyrene	-	20.02	0.363	99	Ν

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D				
Customer and Site Details:	Soil Mechanics: Machyny's Mound						
Sample Details:	TP4 D 1 0.20		Job Number:	S11_0798			
LIMS ID Number:	CL1103742						
			Multiplier:	0.2			
Date Booked in:	04-Feb-11		Dilution Factor:	1			
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν			
Date Analysed:	14-Feb-11		Matrix:	Soil			
QC Batch Number:	269		Method:	Ultrasonic			
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB			

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr. code
Acenaphtho[1,2-j]fluoranthene	000193-21-5	18.82	0.660	95	N
26-Hydroxycholesterol	013095-61-9	18.71	0.479	53	N
Tetradecanamide	000638-58-4	14.07	0.477	72	N
Rubicene-	000197-61-5	17.71	0.350	70	N
Unidentified peak	-	18.94	0.344	-	Ν

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: N	lachyny's Mound		
Sample Details:	TP4 D 7 2.00		Job Number:	S11_0798
LIMS ID Number:	CL1103743			
			Multiplier:	0.2
Date Booked in:	04-Feb-11		Dilution Factor:	1
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	14-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB

CAS #	R.T.	mg/kg	% Fit	Accr. code
000190-70-5	21.24	0.511	58	N
000301-02-0	14.07	0.448	86	N
				_
	000190-70-5	000190-70-5 21.24	000190-70-5 21.24 0.511	000190-70-5 21.24 0.511 58

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: N	/lachyny's Mound		
Sample Details:	TP5 D 3 0.60		Job Number:	S11_0798
LIMS ID Number:	CL1103745			
			Multiplier:	0.2
Date Booked in:	04-Feb-11		Dilution Factor:	1
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	14-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr. code
9-Octadecenamide, (Z)-	000301-02-0	14.07	0.608	90	N
				_	
				_	
				-	-
				+	

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: N	/lachyny's Mound		
Sample Details:	TP6 D 6 1.50		Job Number:	S11_0798
LIMS ID Number:	CL1103747			
			Multiplier:	0.2
Date Booked in:	04-Feb-11		Dilution Factor:	1
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	14-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr. code
Perylene	000198-55-0	16.75	1.025	99	N
4H-Cyclopenta[def]phenanthrene	000203-64-5	11.60	0.727	94	N
Benzo[e]pyrene	000192-97-2	16.52	0.673	99	Ν
1-Methyl-1-hydridotetrachlorocyclotriphosphazene	068351-74-6	18.40	0.559	87	Ν
Unidentified peak	-	18.94	0.498	-	Ν
3,4:8,9-Dibenzopyrene	000189-64-0	20.13	0.461	95	Ν
Dibenzo[def,mno]chrysene	000191-26-4	18.69	0.448	95	Ν
Coronene	000191-07-1	20.74	0.435	91	Ν
11H-Indeno[2,1-a]phenanthrene	000220-97-3	17.14	0.416	89	N
3,4:9,10-Dibenzopyrene	000189-55-9	20.02	0.371	98	Ν

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: N	/lachyny's Mound		
Sample Details:	TP7 D 6 2.00		Job Number:	S11_0798
LIMS ID Number:	CL1103748			
			Multiplier:	0.2
Date Booked in:	04-Feb-11		Dilution Factor:	1
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	14-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr.
					code
Perylene	000198-55-0	16.75	1.401	94	N
Benzo[b]triphenylene	000215-58-7	18.36	1.096	97	N
Dibenzo[def,mno]chrysene	000191-26-4	18.10	0.712	87	N
4H-Cyclopenta[def]phenanthrene	000203-64-5	11.60	0.634	94	N
Benzo[e]pyrene	000192-97-2	16.52	0.602	99	N
Dibenzopyrene	-	20.13	0.568	98	N
Coronene	000191-07-1	20.76	0.556	95	N
Dibenzopyrene	-	20.02	0.464	99	N
Unidentified peak	-	17.99	0.426	-	N
					1

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: N	/lachyny's Mound		
Sample Details:	TP8 D 2 0.50		Job Number:	S11_0798
LIMS ID Number:	CL1103749			
			Multiplier:	2
Date Booked in:	04-Feb-11		Dilution Factor:	10
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	16-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	15SVOC.GC11\	0215_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr. code
Benzo[b]chrysene	000214-17-5	18.32	6.086	78	N
Unidentified peak	-	18.71	5.003	-	N
.betaiso-Methyl ionone	1000285-40-2	17.94	3.579	70	N

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

		Accredited?:No	D	
Customer and Site Details:	Soil Mechanics: N	/lachyny's Mound		
Sample Details:	TP9 D 6 1.50		Job Number:	S11_0798
LIMS ID Number:	CL1103751			
			Multiplier:	0.2
Date Booked in:	04-Feb-11		Dilution Factor:	1
Date Extracted:	13-Feb-11		GPC (Y/N):	Ν
Date Analysed:	14-Feb-11		Matrix:	Soil
QC Batch Number:	269		Method:	Ultrasonic
Directory/Quant File:	14SVOC.GC11\	0214_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	mg/kg	% Fit	Accr.
					code
Nor.alpha.(H)-hopane	-	18.01	1.687	72	Ν
Unidentified peak	-	18.44	1.464	-	Ν
Nor.alpha.(H)-hopane	-	17.65	1.399	78	Ν
Unidentified peak	-	17.08	1.053	-	Ν
Unidentified peak	-	17.54	1.026	-	Ν
Unidentified peak	-	17.35	1.025	-	N
Unidentified peak	-	17.29	0.989	-	Ν
9-Octadecenamide, (Z)-	000301-02-0	14.08	0.919	91	Ν
16-Deoxokryptogenin	1000253-58-9	19.22	0.918	70	Ν
Unidentified peak	-	17.16	0.884	-	Ν
Unidentified peak	-	18.64	0.789	-	N
Stigmastane	000601-58-1	16.70	0.773	60	N
Unidentified peak	-	17.87	0.733	-	Ν
Unidentified peak	-	17.73	0.723	-	Ν
Unidentified peak	-	16.51	0.707	-	Ν
Unidentified peak	-	16.16	0.692	-	Ν
Unidentified peak	-	17.81	0.677	-	Ν
Anthracene, 9-dodecyltetradecahydro-	055401-75-7	18.79	0.619	53	N
Azulene, 1,4-dimethyl-7-(1-methylethyl)-	000489-84-9	19.57	0.585	70	N
Unidentified peak	-	18.97	0.582	-	Ν

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

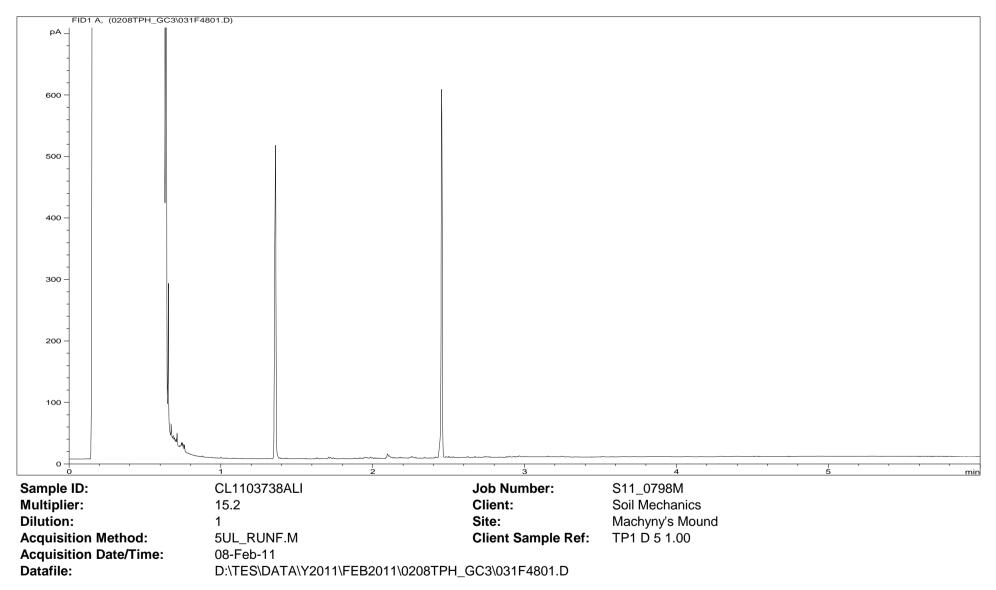
Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details:	Soil Mechanics : Machyny's Mound
Job Number:	S11_0798
Directory:	D:\TES\DATA\Y2011\0211HSA_GC12\021111A 2011-02-11 13-06-35\150B4301.D
Method:	Headspace GCFID
Accreditation Code:	Ν

Matrix:SoilDate Booked in:04-Feb-11Date extracted:15-Feb-11Date Analysed:12-Feb-11, 02:4

		C	oncentratio	on, (mg/kg) - a	s dry weigh	t.			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1103738	TP1 D 5 1.00	<0.012	<0.012	<0.012	<0.012	<0.012	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103739	TP1 D 8 3.00	<0.011	<0.011	<0.011	<0.011	<0.011	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103740	TP2 D 2 0.20	<0.036	<0.036	<0.036	<0.036	<0.036	<0.7	<0.7	<0.7	<0.7	<0.7
* CL1103741	TP3 D 4 1.00	<0.012	<0.012	<0.012	<0.012	<0.012	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103742	TP4 D 1 0.20	<0.011	<0.011	<0.011	<0.011	<0.011	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103743	TP4 D 7 2.00	<0.011	<0.011	<0.011	<0.011	<0.011	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103744	TP4 D 9 3.00	<0.012	<0.012	0.032	0.128	0.045	<0.2	<0.2	<0.2	4.1	4.3
* CL1103745	TP5 D 3 0.60	<0.011	<0.011	<0.011	<0.011	<0.011	<0.2	<0.2	<0.2	1.5	1.6
* CL1103746	TP5 D 6 2.00	<0.012	<0.012	<0.012	<0.012	<0.012	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103747	TP6 D 6 1.50	<0.012	<0.012	<0.012	<0.012	<0.012	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103748	TP7 D 6 2.00	<0.013	<0.013	<0.013	<0.013	<0.013	<0.3	<0.3	<0.3	<0.3	<0.3
* CL1103749	TP8 D 2 0.50	<0.012	<0.012	<0.012	<0.012	<0.012	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1103750	TP8 D 6 2.00	<0.037	<0.037	<0.037	<0.037	<0.037	<0.7	<0.7	<0.7	<0.7	<0.7
* CL1103751	TP9 D 6 1.50	<0.039	<0.039	<0.039	<0.039	<0.039	<0.8	<0.8	<0.8	<0.8	<0.8
* CL1103752	TP10 D 1 0.30	<0.012	<0.012	<0.012	<0.012	<0.012	<0.2	<0.2	<0.2	<0.2	<0.2

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

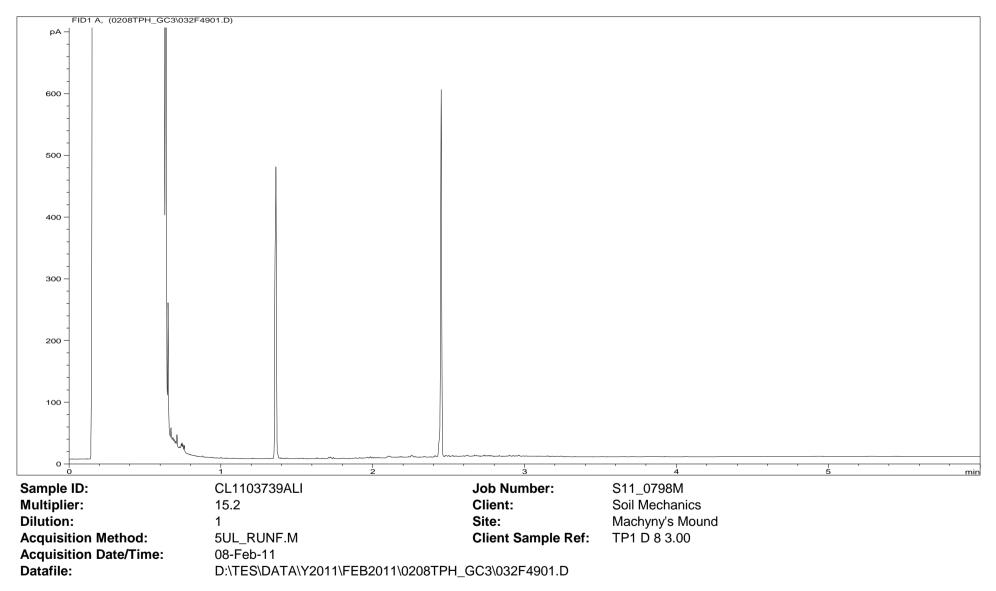

Each BTEX compund is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details:	Soil Mechanics : Machyny's Mound		
Job Number:	S11_0798	Separation:	Silica gel
QC Batch Number:	110226	Eluents:	Hexane, DCM
Directory:	D:\TES\DATA\Y2011\FEB2011\0208TPH_GC	3\055B6501.D	
Method:	Ultra Sonic		

Matrix:SoilDate Booked in04-Feb-11Date Extracted:08-Feb-11Date Analysed:08-Feb-11

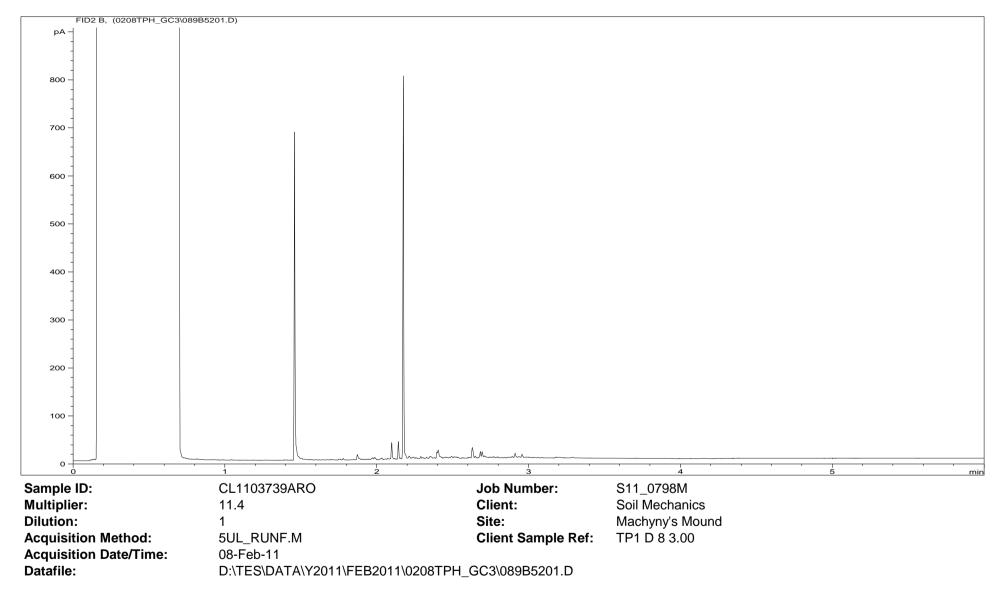
			Concentration, (mg/kg) - as dry weight.										
This sample data is not accredite	ed.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
CL1103738	TP1 D 5 1.00	<5	<5	<5	<5	<5	<5	<5	<5	11.4	19.4	<23	28
CL1103739	TP1 D 8 3.00	<4	<4	<4	<4	<4	<4	<4	9.34	25	48.3	31.4	64.1
CL1103740	TP2 D 2 0.20	<6	<6	<6	<6	<6	<6	<6	<6	<12.50	23.7	<29	31.8
CL1103741	TP3 D 4 1.00	<5	<5	<5	<5	<5	<5	<5	<5	<10.34	<10.34	<24	<24
CL1103742	TP4 D 1 0.20	<5	<5	<5	<5	<5	<5	<5	<5	18.6	17.9	25.4	24.3
CL1103743	TP4 D 7 2.00	<4	<4	<4	<4	<4	<4	4.37	<4	15	11.5	22.5	<22
CL1103744	TP4 D 9 3.00	7.6	<5	110	5.65	921	235	789	429	179	146	2010	817
CL1103745	TP5 D 3 0.60	<5	<5	<5	<5	<5	<5	<5	<5	14.9	15.5	<23	23
CL1103746	TP5 D 6 2.00	<5	<5	<5	<5	<5	<5	<5	5.2	11.2	31.8	<24	42.2
CL1103747	TP6 D 6 1.50	<5	<5	<5	<5	<5	<5	12.4	24.8	65.2	168	93.8	215
CL1103748	TP7 D 6 2.00	<5	<5	<5	<5	7.4	18	15.6	110.7	67.2	440	100.4	597
CL1103749	TP8 D 2 0.50	<5	<5	<5	<5	5.48	<5	29.4	10.9	140	84	192	111.9
CL1103750	TP8 D 6 2.00	<6	<6	<6	<6	<6	<6	8.39	<6	58.2	26.1	93.8	37
CL1103751	TP9 D 6 1.50	<6	<6	<6	<6	<6	6.6	8.55	10.86	92.1	101.5	122.1	144
CL1103752	TP10 D 1 0.30	<5	<5	<5	<5	<5	<5	<5	4.78	12.1	12.2	<24	<24

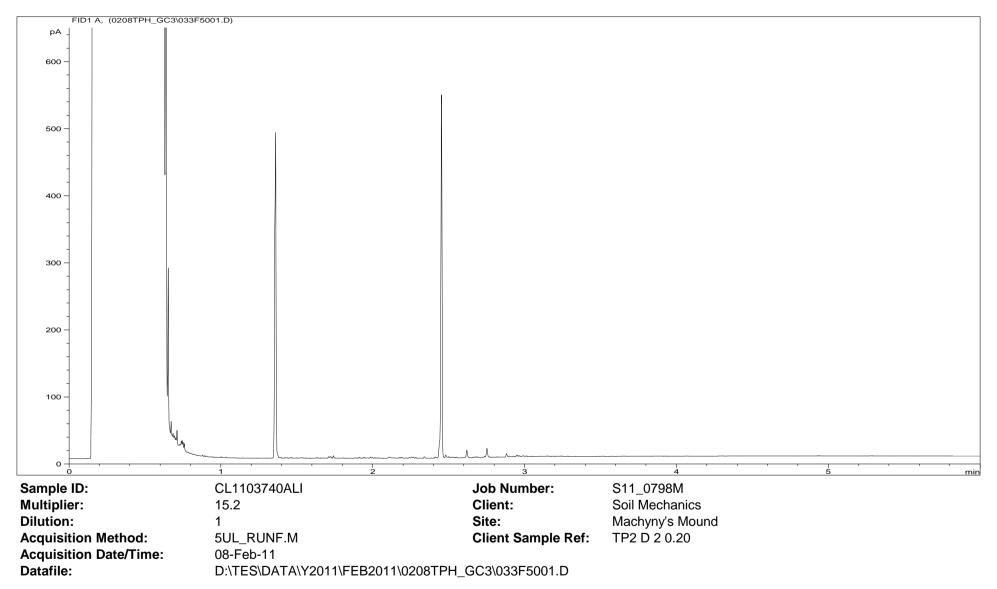

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 32 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

	FID2 B, (0208TPH_GC3	\088B5101.D)				
pA _						
-						
-						
800 -						
-						
700 -						
-						
-						
600 -						
-						
-						
500 -						
-						
-						
-						
400 -						
-						
-						
300 -						
-						
-						
200 -						
-						
100 -						
-						
-						
0 -			~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~			
	ò	1 2	3	4	5	min
Sample		CL1103738ARO	Job Number:	S11_0798M		
Multipli		11.4	Client:	Soil Mechanics		
Dilution		1	Site:	Machyny's Mound		
Acquisi	tion Method:	5UL_RUNF.M	Client Sample Ref:	TP1 D 5 1.00		
Acquisi	tion Date/Time:	08-Feb-11				
Datafile			11\0208TPH_GC3\088B5101.D			

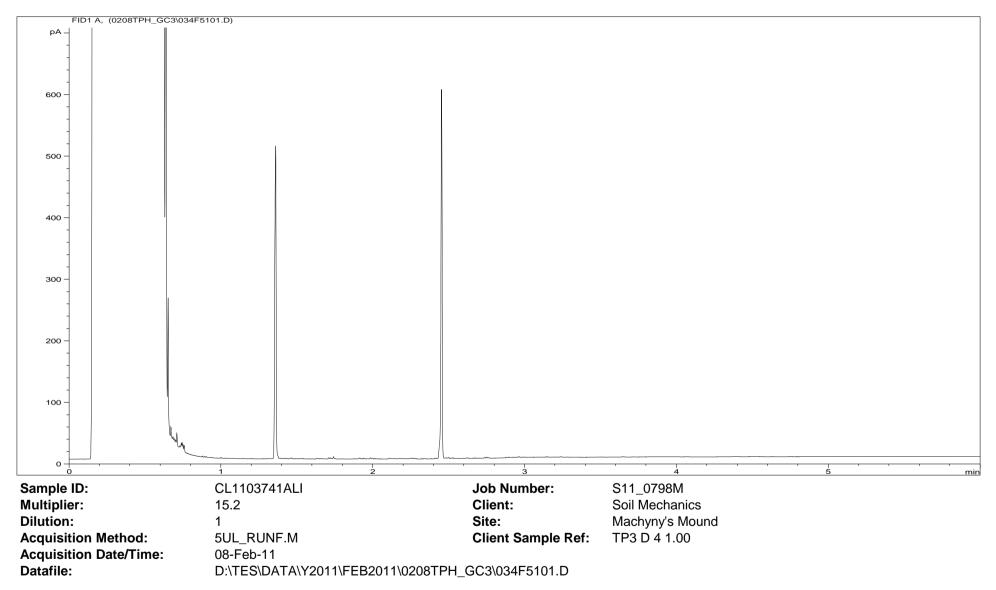

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 33 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.


Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 34 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

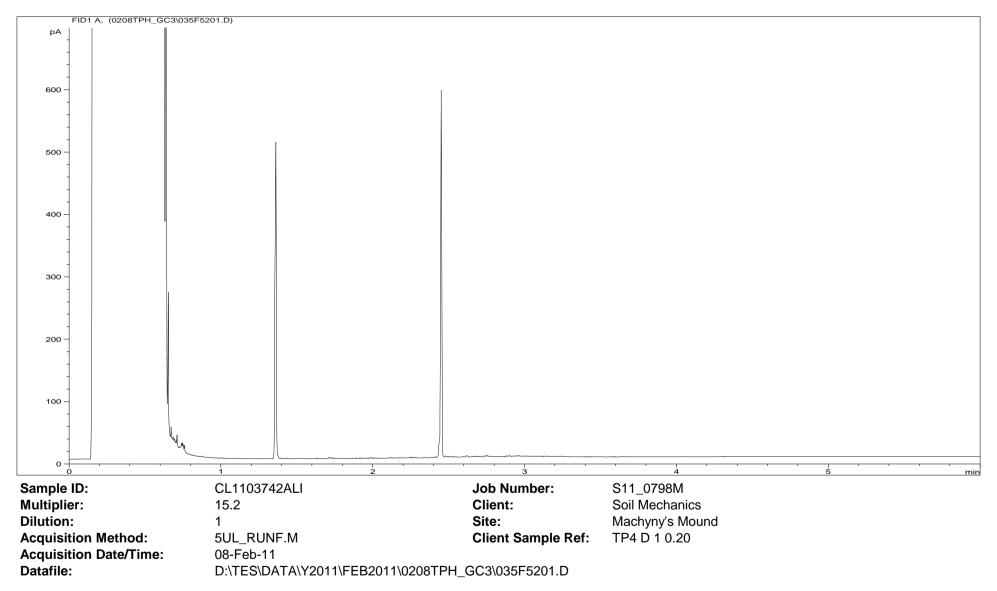
EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 35 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.


Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 36 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

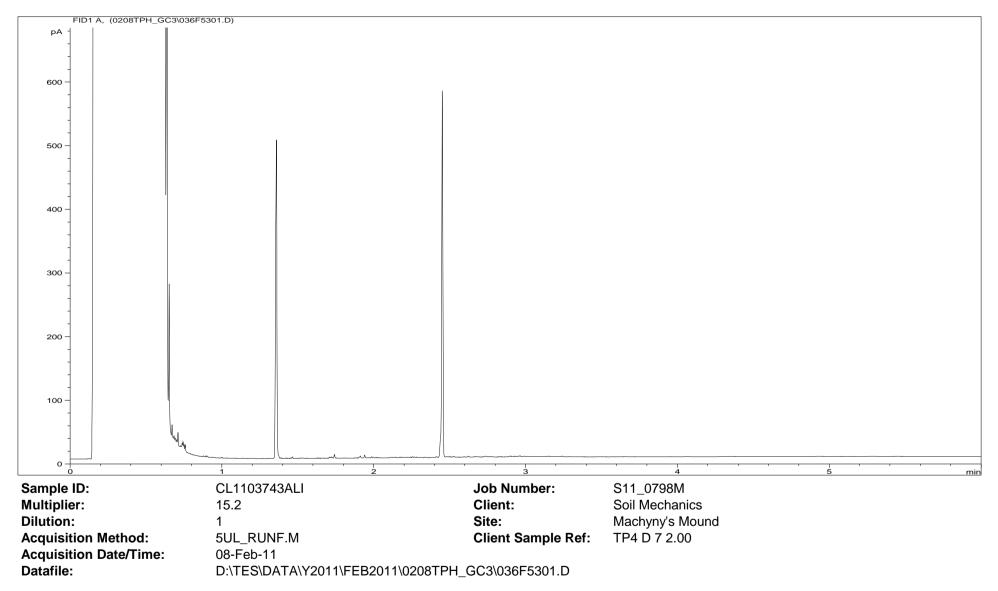
Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

	FID2 B	3, (0208TPH_GC3	\090B5301.D)								
pA											
-											
800 -											
-					I						
-											
700 -											
-											
-											
-											
600 -											
-											
-											
500 -											
-											
-											
-											
400 -											
-											
-											
300 -											
-											
-											
-											
200 -											
-											
-											
100 -											
-											
-											
-						hannen					
0-))		1	2		3	4		5	r r	min
Sample	Sample ID:		CL1103740ARO			Job Number:	S11_0798M				
Multiplier: Dilution:			11.4			Client:	Soil Mechanics				
		1			Site:	Machyny's Mound					
Acquisition Method:		5UL_RUNF.M			Client Sample Ref:	TP2 D 2 0.20					
		Date/Time:	08-Feb-11								
Datafile			D:\TES\DATA\Y2011\FEB2011\0208TPH_GC3\090B5301.D								
				_							


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 37 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

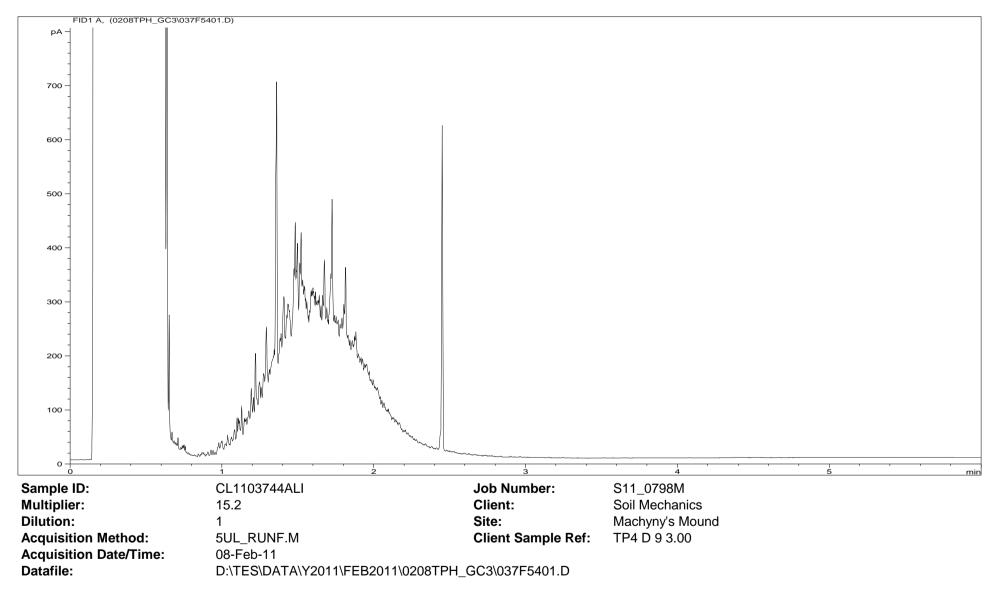
EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 38 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

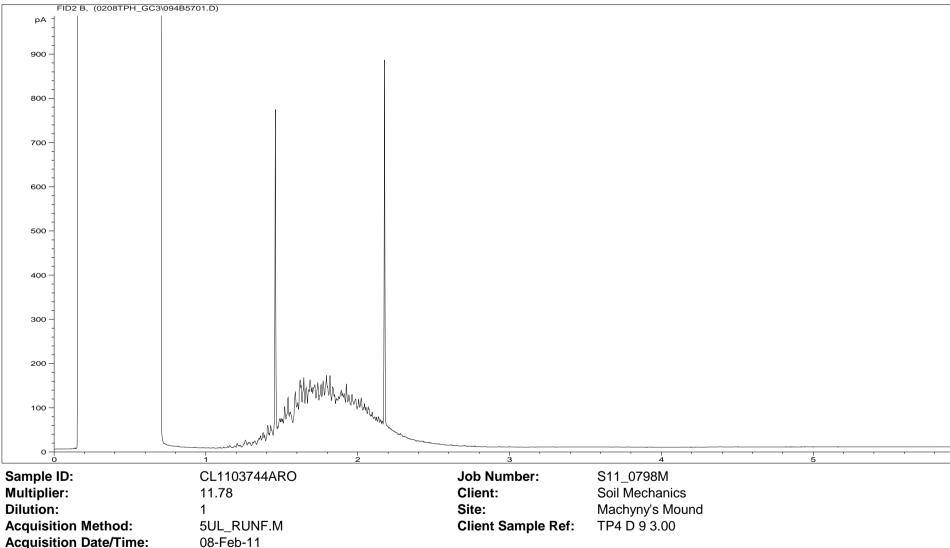
F	FID2 B, (0208TPH_GC3	3\091B5401.D)					
pA _							
800 -							
-							
700 -							
-							
-							
600 -							
-							
500 -							
-							
-							
400 -							
-							
300 -							
-							
-							
200 -							
-							
-							
100 -							
-							
-							
-		l		4			
0		1	2	3	4	5	min
Sample I	D.	CL1103741ARO		Job Number:	S11_0798M	-	
Multiplie		11.78		Client:	Soil Mechanics		
Dilution:		1		Site:	Machyny's Mound		
	ion Method:	5UL_RUNF.M		Client Sample Ref:	TP3 D 4 1.00		
Acquisiti	ion Date/Time:	08-Feb-11					
Datafile:		D:\TES\DATA\Y2011\F	EB2011\0208TPH	GC3\091B5401.D			


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 39 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 40 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

	FID2 B, (0208TPH_GC3	\092B5501.D)					
pA _							
-							
800 -							
-							
-							
700 -							
-							
600 -							
-							
-							
500 -							
-							
-							
400 -							
400 -							
-							
-							
300 -							
-							
-							
200 -							
-							
-							
100 -							
-							
-			hanne have a second a				
0)	1	2	3	4	5	min
Sample	ID:	CL1103742A	RO	Job Number:	S11_0798M		
Multiplie	er:	11.78		Client:	Soil Mechanics		
Dilution	:	1		Site:	Machyny's Mound		
Acquisit	tion Method:	5UL_RUNF.I	M	Client Sample Ref:	TP4 D 1 0.20		
	tion Date/Time:	08-Feb-11		-			
Datafile:	:	D:\TES\DAT	A\Y2011\FEB2011	\0208TPH_GC3\092B5501.D			


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 41 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 42 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

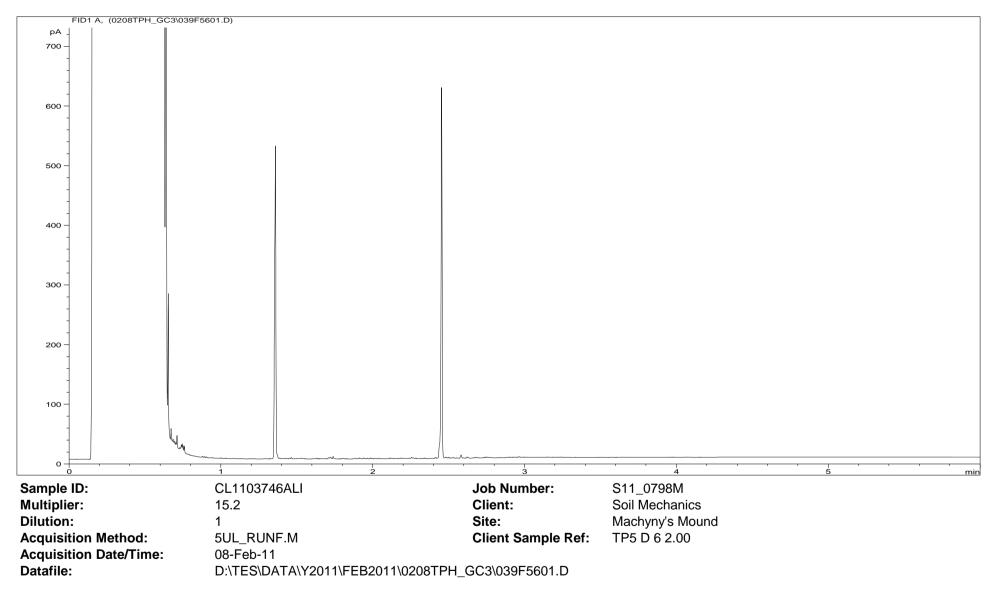
	FID2 B, (0208TPH_GC3	093B5601.D)				
pA -						
-						
800 -						
-						
700 -						
-						
600 -						
-						
500 -						
-						
400 -						
300 -						
-						
200 -						
-						
100 -						
o —						
Ó	_	1 2	3	4	5	min
Sample II		CL1103743ARO	Job Number:	S11_0798M		
Multiplier	r:	11.4	Client:	Soil Mechanics		
Dilution:			Site:	Machyny's Mound		
Acquisitio	on Method:	5UL_RUNF.M	Client Sample Ref:	TP4 D 7 2.00		
	on Date/Time:					
Datafile:		D:\TES\DATA\Y2011\FEB20'	1\0208TPH_GC3\093B5601.D			

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 43 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 44 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

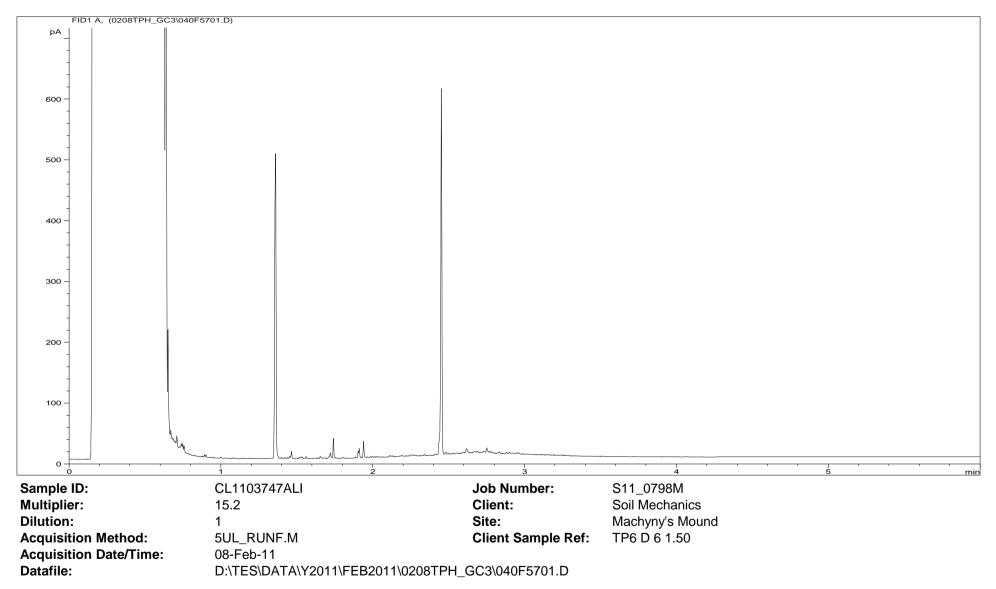
Datafile:

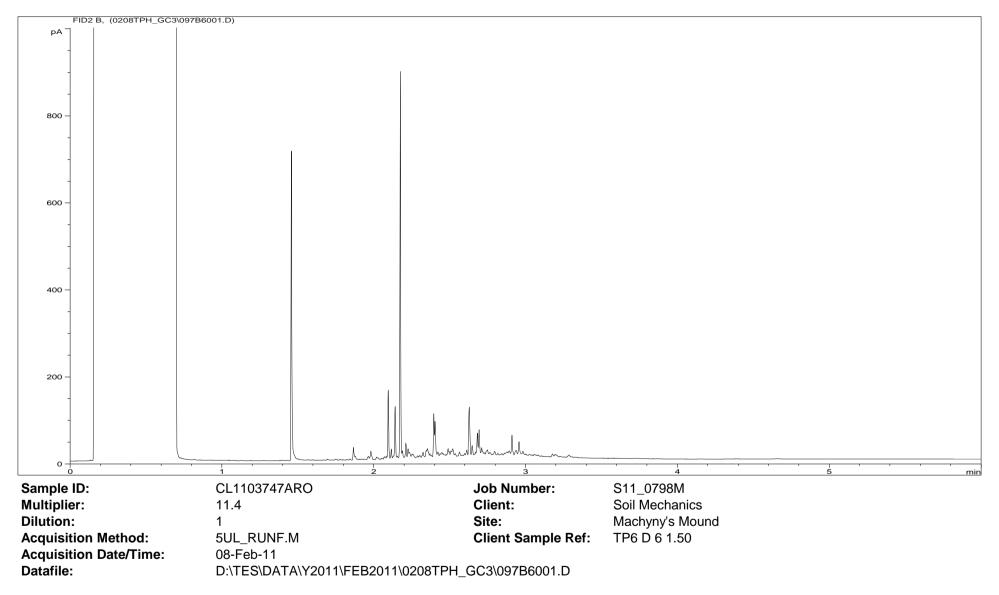
D:\TES\DATA\Y2011\FEB2011\0208TPH_GC3\094B5701.D


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 45 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

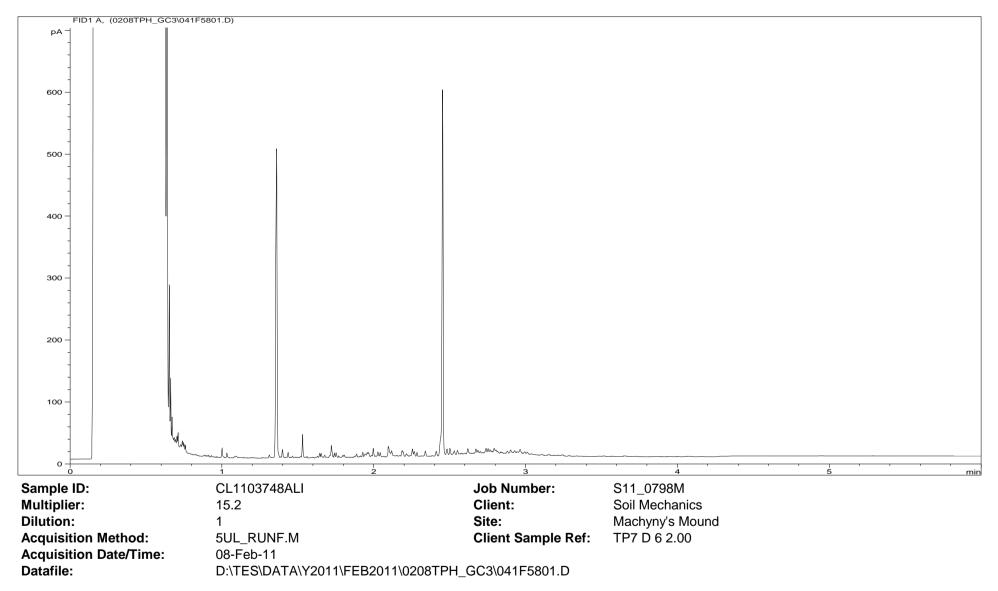
EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 46 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

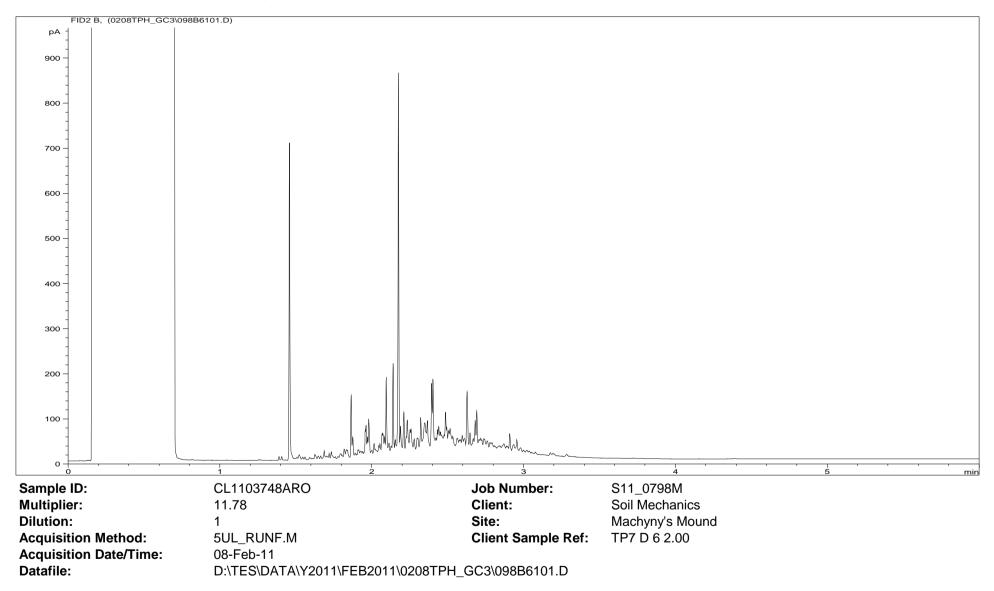
FID2 B, (0208TPH_GC	3\095B5801.D)			
PA -				
800 -				
700 -				
600 -				
500 -				
-				
400 -				
300 -				
200 -				
100 -				
0		3	4 5	min
Sample ID:	CL1103745ARO	Job Number:	S11_0798M	
Multiplier:	11.4	Client:	Soil Mechanics	
Dilution:	1	Site:	Machyny's Mound	
Acquisition Method:	5UL_RUNF.M	Client Sample Ref:	TP5 D 3 0.60	
Acquisition Date/Time:	08-Feb-11			
Datafile:	D:\TES\DATA\Y2011\FEB2011	\0208TPH_GC3\095B5801.D		

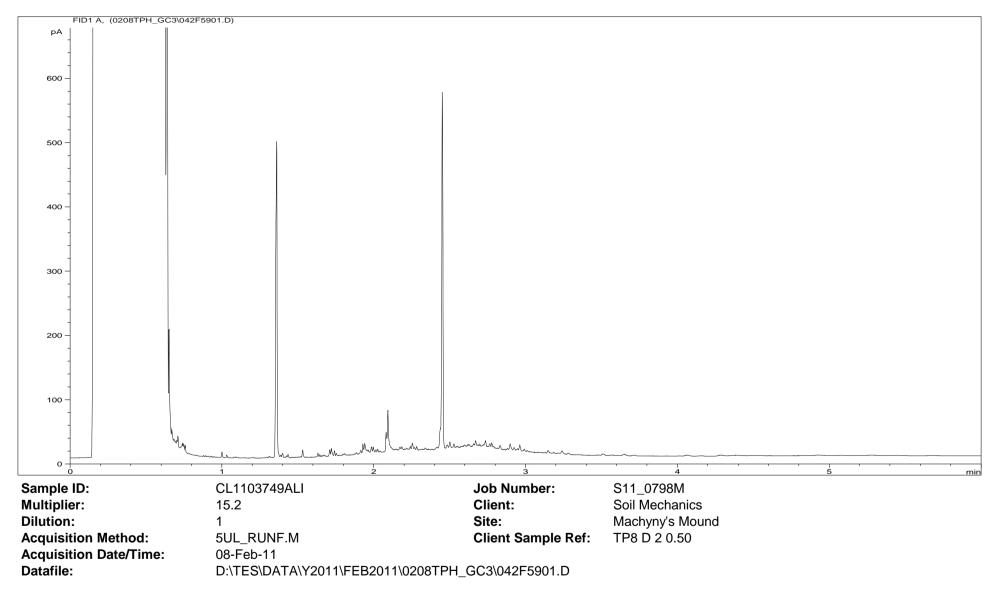

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 47 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

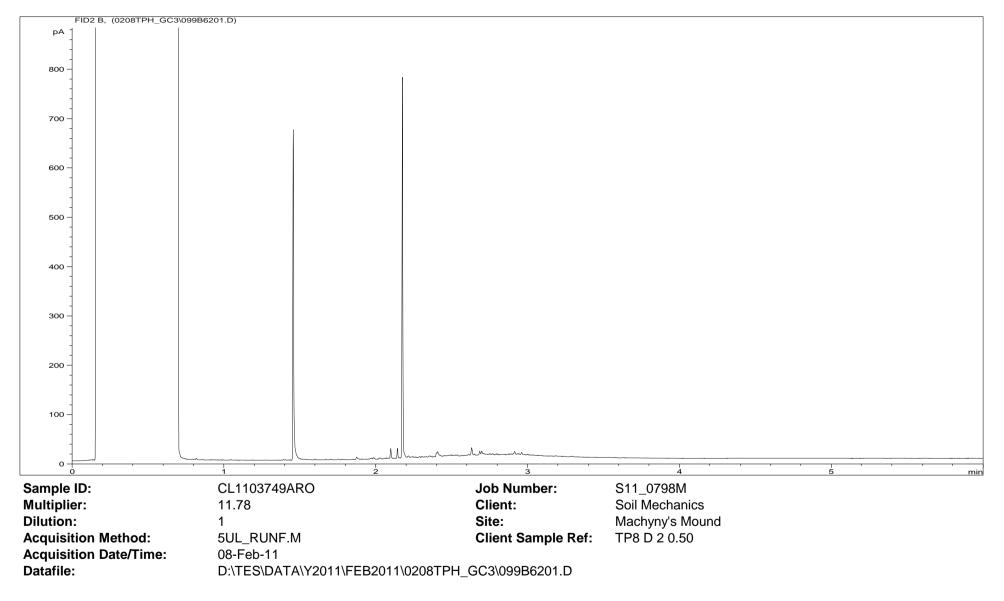

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 48 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

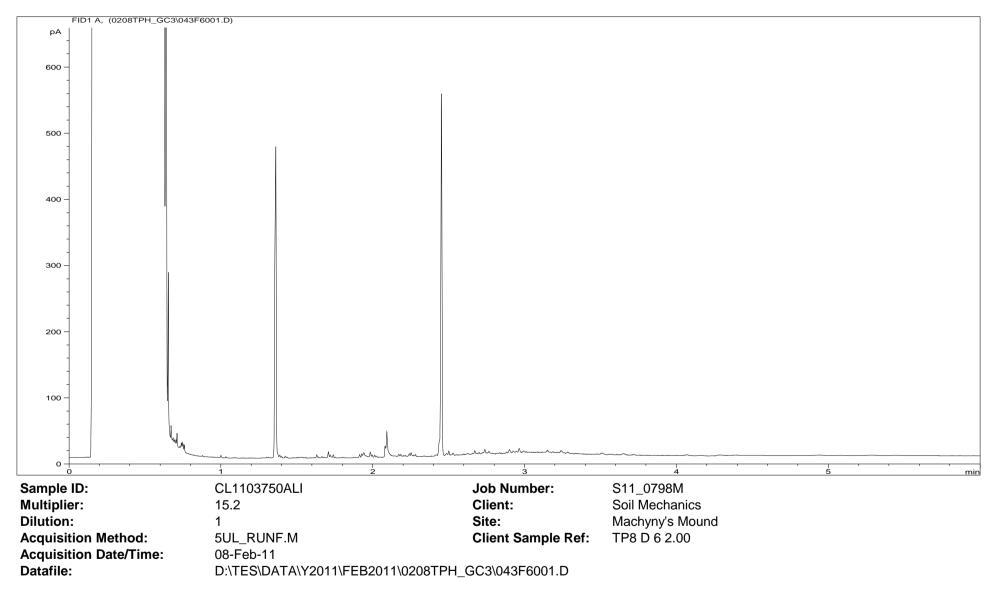
F	FID2 B, (0208TPH_GC3	\096B5901.D)					
pA -							
-							
800 -							
-							
700 -		1					
600 -							
-							
500 -							
400 -							
400 -							
-							
300 -							
-							
-							
200 -							
100 -							
-							
o 🖡				han har		· · · · · · · · · · · · · · · · · · ·	
	_		2	3	4	5	min
Sample II		CL1103746A	KU	Job Number:	S11_0798M		
Multiplie	r:	11.78		Client:	Soil Mechanics		
Dilution:		1		Site:	Machyny's Mound		
	on Method:	5UL_RUNF.N	Л	Client Sample	Ref: TP5 D 6 2.00		
	ion Date/Time:	08-Feb-11					
Datafile:		D:\TES\DATA	A\Y2011\FEB2011	\0208TPH_GC3\096B5901.E	0		


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 49 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

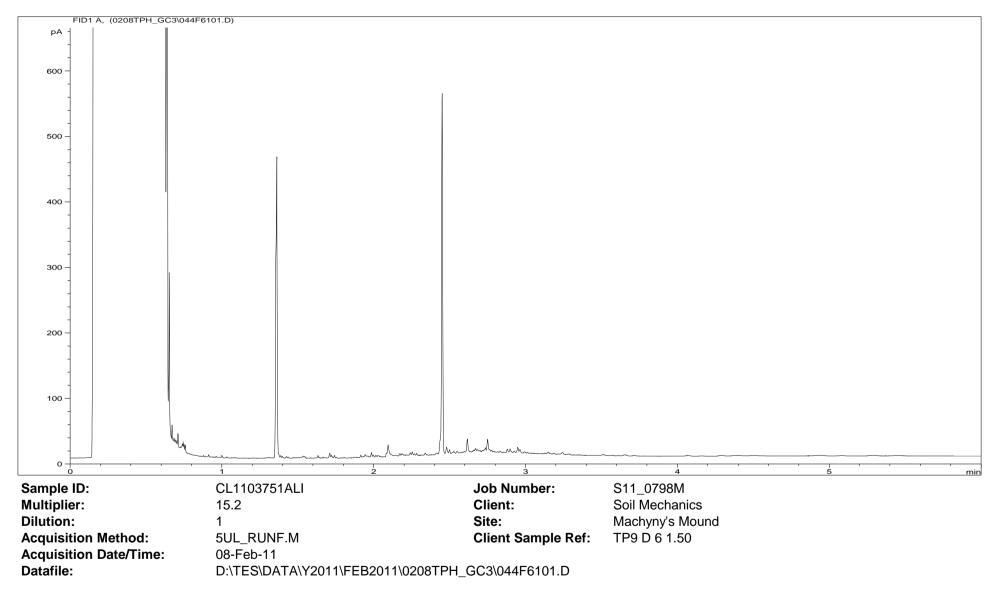

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 50 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

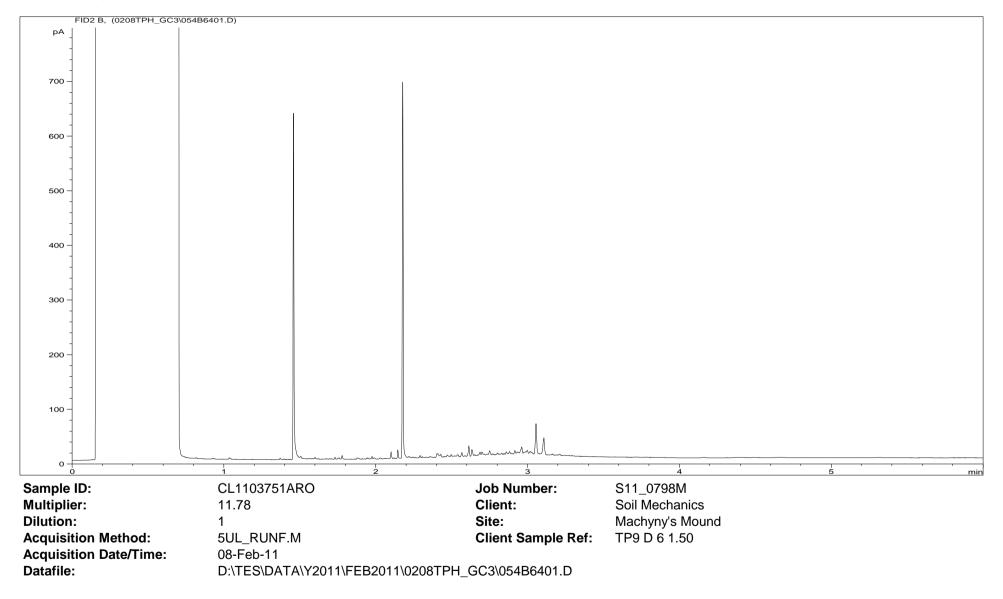

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 51 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 52 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

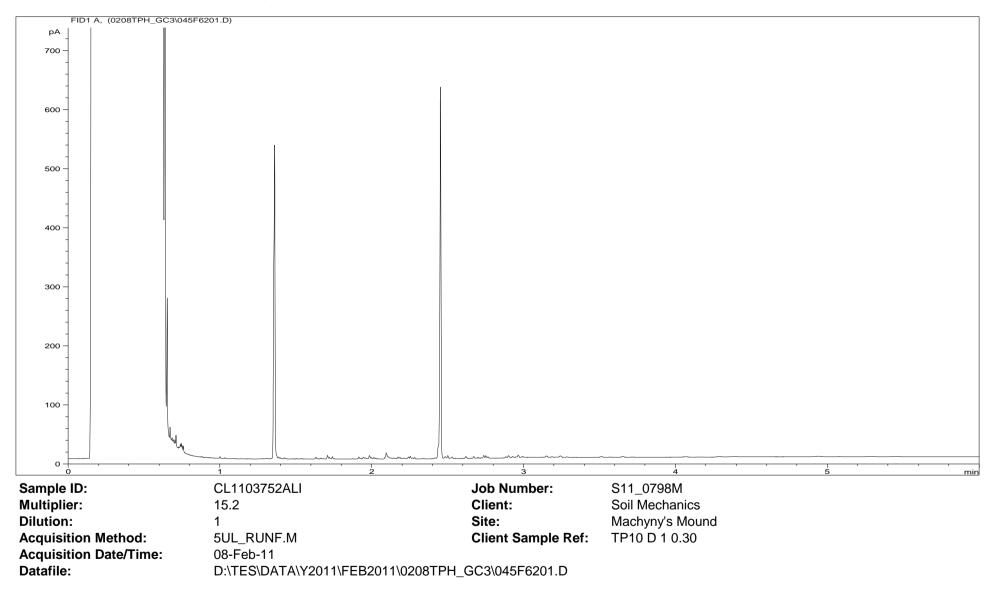

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 53 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 54 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 55 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 56 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

F	ID2 B, (0208TPH_GC	3\100B6301.D)]
pA - 800 -							
800 -							
-							
			1	I			
700 -							
-							
		1					
600 -							
-							
500 -							
400 -							
400 -							
-							
300 -							
-							
- 200 –							
200 -							
-							
]							
100 -							
1							
-							
o –							
0		1	2	3	4	5	min
Sample II		CL1103750ARO		Job Number:	S11_0798M		
Multiplie	r:	11.78		Client:	Soil Mechanics		
Dilution:		1		Site:	Machyny's Mound		
Acquisiti	on Method:	5UL_RUNF.M		Client Sample Ref:			
Acquisiti	on Date/Time:	08-Feb-11					
Datafile:	2.1. 2 4.0, 1 1101		011\FEB2011\	\0208TPH_GC3\100B6301.D			
Batamo.		D.(120,D)(17(12					


EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 57 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 58 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 59 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 60 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

900 -					
- - 800 - -					
700 -					
- 600 - -					
- - 500 - - -					
- - 400 - -					
300 -					
200 -					
100 -					
0		2		4	 min
Sample ID: Multiplier: Dilution: Acquisition M Acquisition D Datafile:	11.4 1 ethod: 5UL_F ate/Time: 08-Fet		Job Number: Client: Site: Client Sample Re 1\0208TPH_GC3\055B6501.D	S11_0798M Soil Mechanics Machyny's Mound ef: TP10 D 1 0.30	

EFS/110798M Ver. 2Where individual results are flagged see report notes for status.Page 61 of 76Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Ma TP1 D 5 1.00 CL1103738 S11_0798M	chyny's Mound		Accr	edited?:	Yes Directory/Quant file: Date Booked in: Date Analysed: Operator:	211VOC_MS19\ 04-Feb-11 11-Feb-11 TP	Initial Calibration	Matrix: Method: Multiplier: Position:	Soil Headspace 1 13	
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr.
Dichlorodifluoromethane	75-71-8 **	-	<1	-	N	o-Xylene	95-47-6	5.80	2	М	UM
Chloromethane	74-87-3 *	-	< 4	-	N	Styrene	100-42-5	-	< 1	-	UM
Vinyl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 2	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48*	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
MTBE	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 2	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	-	< 1	-	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	-	< 1	-	UM
Benzene	71-43-2	-	< 1	-	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	Ν
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	-	< 1	-	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	-	< 4	-	Ν
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 2	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3 **	-	< 6	-	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	-	4	-	N
Toluene	108-88-3	-	< 6	-	UM		Concentrations a	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C	compounds marked	** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that	% fit has been ma	nually interpreted		
Tetrachloroethene	127-18-4	-	< 4	-	UM		This analysis was o	onducted on an 'A	s Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	93 C	Dibromofluoromethane	106	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.49	93 T	oluene-d8	97	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.60	84		•	
Ethylbenzene	100-41-4	-	< 2	-	UM	Bromofluorobenzene	5.99	72			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.40	60			
m and p-Xylene	108-38-3/106-42-3	5.66	6	М	UM	Naphthalene-D8	7.28	25			

Accredited? Yes

				Accr	edited?:	Yes					
Customer and Site Details:		chyny's Mound				Directory/Quant file:	—	Initial Calibration		Soil	
Sample Details:	TP1 D 8 3.00					Date Booked in:	04-Feb-11		Method:	Headspace	
LIMS ID Number:	CL1103739					Date Analysed:	11-Feb-11		Multiplier:	1	
Job Number:	S11_0798M					Operator:	TP		Position:	14	
Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.	Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min.)	µg/kg		code			(min.)	µg/kg		code
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	5.80	6	М	UM
Chloromethane	74-87-3 *	-	< 3	-	N	Styrene	100-42-5	5.81	2	М	UM
Vinyl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 2	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48*	-	< 1	-	Ν	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
MTBE	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	6.10	2	М	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 2	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.24	2	М	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	6.41	1	М	UM
Benzene	71-43-2	4.34	4	М	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	6.55	1	М	UM
Trichloroethene	79-01-6	4.61	1	М	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	7.17	17	М	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 2	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3 **	7.29	21	М	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	7.42	14	М	N
Toluene	108-88-3	5.09	6	М	UM		Concentrations	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C	ompounds marked	I ** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that	% fit has been ma	nually interpreted		
Tetrachloroethene	127-18-4	5.30	4	М	UM		This analysis was o	conducted on an 'A	As Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	68 E	Dibromofluoromethane	122	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.49	61 7	oluene-d8	96	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.60	43		·	
Ethylbenzene	100-41-4	5.62	4	М	UM	Bromofluorobenzene	6.00	29			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.40	19			
m and p-Xylene	108-38-3/106-42-3	5.66	11	М	UM	Naphthalene-D8	7.28	4			

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	TP4 D 1 0.20 CL1103742 S11_0798M				edited?:	Directory/Quant file: Date Booked in: Date Analysed: Operator:	04-Feb-11 11-Feb-11 TP	Initial Calibration	Method: Multiplier: Position:	Soil Headspace 1 15	
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr.
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	5.80	3	М	UM
Chloromethane	74-87-3 *	-	< 3	-	N	Styrene	100-42-5	5.81	2	М	UM
Vinyl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 2	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48*	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
MTBE	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 2	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.24	1	М	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	6.41	1	М	UM
Benzene	71-43-2	4.34	1	М	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	-	< 1	-	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	-	< 3	-	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 2	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3 **	-	< 6	-	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	-	3	-	N
Toluene	108-88-3	-	< 6	-	UM		Concentrations	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C	compounds marked	** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM			% fit has been ma			
Tetrachloroethene	127-18-4	-	< 3	-	UM		This analysis was o	conducted on an 'A	s Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	88 C	Dibromofluoromethane	108	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.50	87 T	oluene-d8	95	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.60	72		· ·	
Ethylbenzene	100-41-4	5.62	2	М	UM	Bromofluorobenzene	5.99	56			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.40	47			
m and p-Xylene	108-38-3/106-42-3	5.66	8	М	UM	Naphthalene-D8	7.28	19			
Noto: Volatilo compoundo doo	urada with time, and th	ic may affect th	a integrity of the data done	nding on the time	coolo hoty	woon compling and analysis. It is	recommended the	t analysis takes pl	non within 7 days of car	nling	

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Ma TP4 D 7 2.00 CL1103743 S11_0798M	achyny's Mound		Accr	edited?:	Yes Directory/Quant file: Date Booked in: Date Analysed: Operator:	211VOC_MS19\ 04-Feb-11 11-Feb-11 TP	Initial Calibration	Matrix: Method: Multiplier: Position:	Soil Headspace 1 16	
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr.
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	5.81	4	М	UM
Chloromethane	74-87-3 *	-	< 3	-	N	Styrene	100-42-5	5.81	2	M	UM
Vinvl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	<1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 2	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	<1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48*	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	<1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
MTBE	1634-04-4	-	<1	-	UM	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 2	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.24	2	М	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	4.17	4	М	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	<1	-	UM	1.3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	6.41	1	М	UM
Benzene	71-43-2	4.34	2	М	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	- 1	< 1	-	UM
Trichloroethene	79-01-6	4.61	1	М	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	7.16	7	М	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 2	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3 **	7.29	12	М	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	7.42	7	М	N
Toluene	108-88-3	5.09	7	М	UM		Concentrations	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C	compounds marked	** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that	% fit has been ma	nually interpreted		
Tetrachloroethene	127-18-4	5.30	3	М	UM		This analysis was o	conducted on an 'A	s Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	76 [Dibromofluoromethane	115	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.49	76 1	oluene-d8	93	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.60	55			
Ethylbenzene	100-41-4	5.62	3	М	UM	Bromofluorobenzene	5.99	37			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.40	25			
m and p-Xylene	108-38-3/106-42-3	5.66	10	М	UM	Naphthalene-D8	7.28	7			
· · · · · ·						ween sampling and analysis. It is	-	t analysis takes n	ace within 7 days of sam	poling	

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	TP5 D 3 0.60 CL1103745 S11_0798M				redited?:	Directory/Quant file: Date Booked in: Date Analysed: Operator:	04-Feb-11 11-Feb-11 TP	Initial Calibration	n Matrix: Method: Multiplier: Position:	Soil Headspace 1 17	
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	5.80	2	М	UM
Chloromethane	74-87-3 *	-	< 3	-	N	Styrene	100-42-5	-	< 1	-	UM
Vinyl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 2	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48*	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
MTBE	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 2	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	-	< 1	-	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	6.41	1	М	UM
Benzene	71-43-2	-	< 1	-	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	4.61	1	М	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	-	< 3	-	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 2	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3 **	-	< 6	-	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	-	3	-	N
Toluene	108-88-3	-	< 6	-	UM		Concentrations	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C	Compounds marked	1 ** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that	% fit has been ma	anually interpreted		
Tetrachloroethene	127-18-4	-	< 3	-	UM		This analysis was	conducted on an '	As Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	82 1	Dibromofluoromethane	113	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.50	83	Toluene-d8	92	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.60	65			
Ethylbenzene	100-41-4	-	< 2	-	UM	Bromofluorobenzene	6.00	48			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.40	34			
m and p-Xylene	108-38-3/106-42-3	5.66	5	М	UM	Naphthalene-D8	7.28	16			
			a integrity of the data dana	nding on the time		ween sampling and analysis. It is	recommended the	t analysis takes n	lace within 7 days of sam	nling	

Accredited? Yes

LIMS ID Number: Cl Job Number: S	P6 D 6 1.50 CL1103747	chyny's Mound				Directory/Quant file: Date Booked in:	211VOC_MS19\ 04-Feb-11	Initial Calibration		Soil	
LIMS ID Number: Cl Job Number: S	CL1103747 S11_0798M					Date Rooked in:					
Job Number: S	S11_0798M					Date Analysed:	11-Feb-11		Method:	Headspace	
	-		S11 0798M						Multiplier:	1	
	CAC #					Operator:	ТР		Position:	18	
Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.	Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min.)	µg/kg		code			(min.)	µg/kg		code
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	5.80	5	М	UM
Chloromethane	74-87-3 *	-	< 4	-	N	Styrene	100-42-5	5.81	2	М	UM
Vinyl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 2	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	Ν
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48*	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
МТВЕ	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	6.10	1	М	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 2	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.24	2	М	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	6.40	1	М	UM
Benzene	71-43-2	4.34	2	М	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	-	< 1	-	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	7.17	7	М	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 2	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3 **	7.29	12	М	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	7.42	7	М	N
Toluene	108-88-3	5.09	9	М	UM		Concentrations a	are reported on a	dry weight basis	•	
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C			or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that	% fit has been ma	nually interpreted		
Tetrachloroethene	127-18-4	-	< 4	-	UM		This analysis was c	conducted on an 'A	s Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	76 D	Dibromofluoromethane	107	_
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.49	72 T	oluene-d8	92	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.60	48		1	
Ethylbenzene	100-41-4	5.62	4	М	UM	Bromofluorobenzene	5.99	33			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.40	24			
	08-38-3/106-42-3	5.66	10	М	UM	Naphthalene-D8	7.28	7			

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Ma TP7 D 6 2.00 CL1103748 S11_0798M	chyny's Mound	Da Da Op				Initial Calibration	Matrix: Method: Multiplier: Position:	Soil Headspace 1 19		
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS # R.T. (min.)		Concentration µg/kg	% Fit	Accr. code
Dichlorodifluoromethane	75-71-8 **	-	<1	-	N	o-Xylene	95-47-6	5.80	3	М	UM
Chloromethane	74-87-3 *	-	< 4	-	N	Styrene	100-42-5	-	< 1	-	UM
Vinyl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 3	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1.1-Dichloroethene	75-35-48*	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
МТВЕ	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 3	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	-	< 1	-	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	-	< 1	-	UM
Benzene	71-43-2	-	< 1	-	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	-	< 1	-	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	7.16	5	М	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 3	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3 **	-	< 6	-	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	7.42	6	М	N
Toluene	108-88-3	-	< 6	-	UM	, ,	Concentrations a	are reported on a	dry weight basis	1	
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C			or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that				
Tetrachloroethene	127-18-4	-	< 4	-	UM		This analysis was o	onducted on an 'A	As Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	78 🛛	Dibromofluoromethane	107	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.50	71 T	oluene-d8	92	
Chlorobenzene	108-90-7	-	<1	-	UM	Chlorobenzene-d5	5.60	50			
Ethylbenzene	100-41-4	-	< 3	-	UM	Bromofluorobenzene	5.99	35			
1,1,1,2-Tetrachloroethane	630-20-6	-	<1	-	UM	1,4-Dichlorobenzene-d4	6.40	24			
m and p-Xylene	108-38-3/106-42-3	5.66	6	М	UM	Naphthalene-D8	7.28	9			

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Ma TP8 D 2 0.50 CL1103749 S11_0798M	achyny's Mound	Da Da		Yes Directory/Quant file: Date Booked in: Date Analysed: Operator:	211VOC_MS19\ 04-Feb-11 11-Feb-11 TP	Initial Calibratior	Matrix: Method: Multiplier: Position:	Soil Headspace 1 20		
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	5.80	6	М	UM
Chloromethane	74-87-3 *	-	< 4	-	N	Styrene	100-42-5	5.81	2	M	UM
Vinvl Chloride	75-01-4	-	< 1	-	UM	Bromoform	75-25-2	-	< 1	-	UM
Bromomethane	74-83-9	-	<1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3	-	< 2	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	<1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48*	-	<1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	<1	_	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	<1	_	UM	2-Chlorotoluene	95-49-8	_	< 1	_	UM
MTBE	1634-04-4	-	<1	_	UM	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-	UM
2,2-Dichloropropane	594-20-7	-	<1	_	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 2	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	<1	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.24	1	М	UM
Chloroform	67-66-3	-	<1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	<1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1.3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	<1	-	UM	1,4-Dichlorobenzene	106-46-7	-	< 1	-	UM
Benzene	71-43-2	4.34	4	М	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	4.61	207	98	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1.2.4-Trichlorobenzene	120-82-1 **	7.17	12	М	N
Dibromomethane	74-95-3	-	<1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 2	-	N
Bromodichloromethane	75-27-4	-	<1	-	UM	Naphthalene	91-20-3 **	7.29	14	М	N
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	7.42	7	М	N
Toluene	108-88-3	5.09	6	М	UM	, , ,	Concentrations	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	C			or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that				
Tetrachloroethene	127-18-4	5.30	4	М	UM		This analysis was o	conducted on an 'A	As Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.15	66 [Dibromofluoromethane	117	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.49	64	Toluene-d8	88	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.60	38]
Ethylbenzene	100-41-4	5.62	4	М	UM	Bromofluorobenzene	5.99	24			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.40	14			
m and p-Xylene	108-38-3/106-42-3	5.66	12	М	UM	Naphthalene-D8	7.28	4			
				nding on the time		ween sampling and analysis. It is	recommended the	t analysis takes n	ace within 7 days of sam	nling	

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	TP9 D 6 1.50 CL1103751 S11_0798M		Accredited?:			Directory/Quant file: Date Booked in: Date Analysed: Operator:	04-Feb-11 11-Feb-11 TP	Initial Calibratior	Method: Multiplier: Position:	Soil Headspace 1 21	
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code
Dichlorodifluoromethane	75-71-8 **	-	< 2	-	N	o-Xylene	95-47-6	5.80	<u>µg/ng</u>	м	UM
Chloromethane	74-87-3 *	-	< 5	-	N	Styrene	100-42-5	5.81	3	М	UM
Vinyl Chloride	75-01-4	-	< 2	-	UM	Bromoform	75-25-2	-	< 2	-	UM
Bromomethane	74-83-9	-	< 2	-	UM	iso-Propylbenzene	98-82-8	-	< 2	-	UM
Chloroethane	75-00-3	-	< 3	-	UM	1,1,2,2-Tetrachloroethane	79-34-5*	-	< 2	-	N
Trichlorofluoromethane	75-69-4	-	< 2	-	UM	Propylbenzene	103-65-1	-	< 2	-	UM
1,1-Dichloroethene	75-35-48*	-	< 2	-	N	Bromobenzene	108-86-1	-	< 2	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 2	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 2	-	UM
1,1-Dichloroethane	75-34-3	-	< 2	-	UM	2-Chlorotoluene	95-49-8	-	< 2	-	UM
MTBE	1634-04-4	-	< 2	-	UM	1,3,5-Trimethylbenzene	108-67-8	6.10	3	М	UM
2,2-Dichloropropane	594-20-7	-	< 2	-	UM	4-Chlorotoluene	106-43-4	-	< 2	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 3	-	UM	tert-Butylbenzene	98-06-6	-	< 2	-	UM
Bromochloromethane	74-97-5	-	< 2	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.24	5	М	UM
Chloroform	67-66-3	-	< 2	-	UM	sec-Butylbenzene	135-98-8	-	< 2	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 2	-	UM	p-Isopropyltoluene	99-87-6	6.33	8	М	UM
Carbon Tetrachloride	56-23-5	-	< 2	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 2	-	UM
1,1-Dichloropropene	563-58-6	-	< 2	-	UM	1,4-Dichlorobenzene	106-46-7	6.40	2	М	UM
Benzene	71-43-2	4.34	3	М	UM	n-Butylbenzene	104-51-8 *	-	< 2	-	N
1,2-Dichloroethane	107-06-2	-	< 2	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 2	-	UM
Trichloroethene	79-01-6	4.61	2	М	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 2	-	UM
1,2-Dichloropropane	78-87-5	-	< 2	-	UM	1,2,4-Trichlorobenzene	120-82-1 **	7.17	12	М	N
Dibromomethane	74-95-3	-	< 2	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 3	-	Ν
Bromodichloromethane	75-27-4	-	< 2	-	UM	Naphthalene	91-20-3 **	7.29	25	М	Ν
cis 1,3-Dichloropropene	10061-01-5	-	< 2	-	UM	1,2,3-Trichlorobenzene	87-61-6 **	7.42	9	М	N
Toluene	108-88-3	5.09	15	М	UM		Concentrations	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 2	-	UM	C	compounds marked	1 ** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 2	-	UM		"M" denotes that	% fit has been ma	nually interpreted		
Tetrachloroethene	127-18-4	-	< 5	-	UM		This analysis was o	conducted on an '/	As Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 2	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 2	-	UM	Pentafluorobenzene	4.15	71 [Dibromofluoromethane	115	
1,2-Dibromoethane	106-93-4	-	< 2	-	UM	1,4-Difluorobenzene	4.49	65	Foluene-d8	91	
Chlorobenzene	108-90-7	-	< 2	-	UM	Chlorobenzene-d5	5.60	41			
Ethylbenzene	100-41-4	5.62	9	М	UM	Bromofluorobenzene	6.00	27			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 2	-	UM	1,4-Dichlorobenzene-d4	6.40	17			
m and p-Xylene	108-38-3/106-42-3	5.65	23	М	UM	Naphthalene-D8	7.28	5			

Dioxins

Customer and Site Details : Soil Mechanics - Machyny's Mound Report Number : S110798

Report Date : 23/02/2011

Matrix (level) : Soil Units : ng/kg

This sample	data is not accredited.

		The sample dat											
Scientifics Lab ID Number	Client Reference	Date Sampled	2378 Tetra CDD	12378 Penta CDD	123478 Hexa CDD	123678 Hexa CDD	123789 Hexa CDD	1234678 Hepta CDD	OCDD Octa CDD	Total 2378-Dioxins			
CL/1103738	TP1 D 5 1.00		0.41	2	2.4	5	2.5	81	262	353			
CL/1103742	TP4 D 1 0.20		<0.02	<0.5	1.7	1.5	2.1	18	274	294			
CL/1103751	TP9 D 6 1.50		2.4	8	16	12	9.4	130	369	542			

EFS/110798M Ver. 2 Page 71 of 76 Where individual results are flagged see report notes for status.

Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Dioxins

Customer and Site Details : Soil Mechanics - Machyny's Mound Report Number : S110798

Report Date : 23/02/2011

Matrix (level) : Soil Units : ng/kg

		This sample data	a is not accr	edited.								1	1
Scientifics Lab ID Number	Client Reference	Date Sampled	2378 Tetra CDD	12378 Penta CDD	123478 Hexa CDD	123678 Hexa CDD	123789 Hexa CDD	1234678 Hepta CDD	OCDD Octa CDD	Total 2378-Dioxins			
CL/1103738	TP1 D 5 1.00		0.41	2	2.4	5	2.5	80	260	350			
CL/1103742	TP4 D 1 0.20		<0.02	<0.5	1.7	1.5	2.1	18	270	290			
CL/1103751	TP9 D 6 1.50		2.2	7	15	11	8.7	120	340	500			

Where individual results are flagged see report notes for status.

Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Certificate of Analysis for Asbestos in Soils

		ASBESTOS A	NAL	YSIS F	RESULTS	- SOIL ANA	ALYSIS				
Client:		Scientifics Environmental Chemistry					Page 1 of 1				
Address:		Etwall House, Bretby Business Park, As	hby Roac	d, Burton ι	ipon Trent		Report No:ANO-0488-810				
For the	attention of :	Soil Mechanics					Report Date:15/02/11				
		Machyny's Mound					Project Number:S110798				
SAMPLE NUMBER	SAMPLE DATE	SAMPLE LOCATION	Sample Type	DEPTH (M)	TEST DATE	% asbestos by dry weight**	ASBESTOS FIBRE TYPES IDENTIFIED				
CL/1103738	DATE	TP1 1.0			15/02/2011		No Asbestos Identified in Sample				
CL/1103739		TP1 3.0			15/02/2011		No Asbestos Identified in Sample				
CL/1103740		TP2 0.2			15/02/2011		No Asbestos Identified in Sample				
CL/1103741		TP3 1.0			15/02/2011		No Asbestos Identified in Sample				
CL/1103742		TP4 0.2			15/02/2011		No Asbestos Identified in Sample				
CL/1103743		TP4 2.0			15/02/2011		Chrysotile				
CL/1103744		TP4 3.0			15/02/2011	Screen Only	No Asbestos Identified in Sample				
CL/1103745		TP5 0.6			15/02/2011		No Asbestos Identified in Sample				
CL/1103746		TP5 2.0			15/02/2011	Screen Only	No Asbestos Identified in Sample				
CL/1103747		TP6 1.5			15/02/2011		Chrysotile				
CL/1103748		TP7 2.0			15/02/2011		No Asbestos Identified in Sample				
CL/1103749		TP8 0.5			15/02/2011		Chrysotile				
CL/1103750		TP8 2.0			15/02/2011		No Asbestos Identified in Sample				
CL/1103751		TP9 1.5			15/02/2011		No Asbestos Identified in Sample				
CL/1103752		TP10 0.3			15/02/2011	Screen Only	No Asbestos Identified in Sample				
*Sampling carrie	d out by client	** Detection limit advised by client				•					
The sample analysis November 1997 (with	for the above result	s was carried out using the procedures detailed in	ESG Asbes	stos Limited	in house method (SC	CI-ASB-020) based on	HSE document MDHS 90 - Asbestos Contaminated Land - Draft 5 -				
Key				rised Signa	atory:	Name:	Kate Lovatt				
NADIS = No Asbesto	s Detected in Samp	le		'l L		Position:	System Support & Quality Manager				

ESG Asbestos Limited is a wholly owned subsidiary of Environmental Scientifics Group Limited (ESG), registered in England and Wales, registered company 04951688.

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
VOCHSAS	CL/1103739	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.
VOCHSAS	CL/1103742	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.
VOCHSAS	CL/1103743	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.
VOCHSAS	CL/1103745	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.
VOCHSAS	CL/1103747	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.
VOCHSAS	CL/1103748	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.
VOCHSAS	CL/1103749	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.
VOCHSAS	CL/1103751	Low internal responses, repeat of samples confim this, suggesting sample matrix to be the probable cause.

EFS/110798M Ver. 2 Where individual results are flagged see report notes for status.

Page 34 bbs 76 prected to dry weight at 105 °C where appropriate, in accordance with the MCERTS standard.

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace GCFID
Soil	ICPACIDS	Air Dried	Determination of Total Sulphate in soil samples by Hydrochloric Acid extraction followed by ICPOES detection
Soil	ICPBOR	Air Dried	Determination of Boron in soil samples by hot water extraction followed by ICPOES detection
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS
Soil	ICPSOIL	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPOES detection
Soil	ICPWSS	Air Dried	Determination of Water Soluble Sulphate in soil samples by water extraction followed by ICPOES detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SFAS	As Received	Segmented flow analysis with colorimetric detection
Soil	Subcon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Soil	SVOCMSUS	As Received	Determination of Semi Volatile Organic Compounds in soil samples by hexane / acetone extraction followed by GCMS detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection including quantitation of Aromatic and Aliphatic fractions.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by Headspace GCMS
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample

Symbol Reference

^ Sub-contracted analysis. Note: The accreditation status is that assigned by the subcontract laboratory.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined

N.Det Not detected

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

END OF REPORT

Where individual results are flagged see report notes for status.

Sample Descriptions

Client : Soil Mechanics

Site : Machyny's Mound

Report Number : S11_0798M

Lab ID Number **Client ID** Description Brown MADE GROUND CL/1103738 TP1 D 5 1.00 Grey Gravel SILT CL/1103739 TP1 D 8 3.00 CL/1103740 TP2 D 2 0.20 Grey Gravel SILT Brown Stone SILT CL/1103741 TP3 D 4 1.00 CL/1103742 TP4 D 1 0.20 Grey Stone SILT CL/1103743 TP4 D 7 2.00 Grey Stone SILT Grey Stone SILT CL/1103744 TP4 D 9 3.00 Grey Stone SILT CL/1103745 TP5 D 3 0.60 Grey MADE GROUND CL/1103746 TP5 D 6 2.00 CL/1103747 TP6 D 6 1.50 Grey Gravel SILT CL/1103748 TP7 D 6 2.00 Grey Stone SILT Grey MADE GROUND CL/1103749 TP8 D 2 0.50 Grey Stone SILT CL/1103750 TP8 D 6 2.00 CL/1103751 TP9 D 6 1.50 Grey Stone SILT Rootlets CL/1103752 TP10 D 1 0.30 Brown Stone SILT

Note: major constituent in upper case

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/111308M (Ver. 1)

Soil Mechanics Unit 15 Crosby Yard Bridgend Mid Glamorgan CF31 1JZ

Site: Machyny's Mound

The 3 samples described in this report were logged for analysis by Scientifics on 21-Feb-2011. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 02-Mar-2011

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by Scientifics.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (80) Results (Pages 4 to 6) Table of GRO Results (Page 7) Table of TPH (Si) banding (std) (Page 8) GC-FID Chromatograms (Pages 9 to 14) Table of Asbestos Screening Results (Page 15) Table of Method Descriptions (Page 16) Table of Report Notes (Page 17) Table of Sample Descriptions (Appendix A Page 1 of 1)

tin

On behalf of Scientifics : Andrew Timms

Operations Manager

Date of Issue: 02-Mar-2011

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory. (NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS. All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) Scientifics accepts no responsibility for any sampling not carried out by our personnel.

	Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Method Codes : Method Reporting Limits :	ICPACIDS 20	ICPBOR 0.5	ICPMSS 0.3	ICPMSS 0.2	ICPMSS 1.2	ICPMSS 1.6	ICPMSS 0.7	ICPMSS 0.5	ICPMSS 2	ICPMSS 0.5	ICPMSS 0.6	ICPMSS 16	ICPSOIL 1	ICPSOIL 0.1	ICPWSS 10	PAHMSUS 0.08
	Accreditation Code:	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	U	UM	N	UM	UM	0.00
Laboratory ID Number CL/	Client Sample Description	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Vanadium (MS)	Zinc (MS)	Barium.	Beryllium.	SO4 (H2O sol) mg/l	PAH by MS.16(0.08)
1106341	BH1 D 2 0.30	327	0.8	11.3	0.3	21	32.5	57	<0.5	20.6	<0.5	24	134.5	129	0.73	88	Req
1106342	BH1 D 6 1.20	940	1.2	25.7	0.55	17	106.8	28.6	<0.6	41.5	0.9	32.9	195.8	355	1.3	310	Req
1106343	BH2 D 7 2.00	889	0.9	34.3	0.53	210.9	123.3	2390	<0.54	22.7	<0.5	300	171.5	346	0.78	354	Req
	scientifics	Client N			chanics						Soils Sample Analysis						
	Bretby Business Park, Ashby Road	Contact		Mr A Hen	ry												
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			N	<i>l</i> lachy	'ny's l	Moun	d			Date Printed02-Mar-11Report NumberEFS/111308MTable Number1						

	Units :	pH Units	mg/kg	mg/kg		%	mg/kg	mg/kg	mg/kg	% M/M							
	Method Codes :	PHSOIL	SFAPI	SFAPI	Sub02a	TMSS	TPHUSSI	GROHSA	SFAS	WSLM59							
	Method Reporting Limits :		0.5	0.5		0.2	10.0	0.1	0.5	0.01							
	Accreditation Code:	UM	UM	UM	U	U			N	Ν							
Laboratory ID Number CL/	Client Sample Description	pH units (AR)	Cyanide(Free) (AR)	Cyanide(Total) (AR)	^Asbestos Screen	Tot.Moisture @ 105C	TPH by GCFID (AR/Si)	GRO (AA)	Sulphide as S (AR)	Total Organic Carbon							
1106341	BH1 D 2 0.30	8.6	<0.6	<0.6	СН	13.7	Req	Req	<0.6	1.779							
1106342	BH1 D 6 1.20	8.1	<0.7	<0.7	СН	28.6	Req	Req	<0.7	>31							
1106343	BH2 D 7 2.00	8.3	<0.7	<0.7	СН	18.2	Req	Req	<0.7	0.832							
	scientifics Bretby Business Park, Ashby Road	Client N Contact	Client Name Soil Mechanics Soils Sample					ample	Analysi	s							
		Contact		Mr A Hen	'' y						Date Prir				02-Mar-11		
	Burton-on-Trent, Staffordshire, DE15 0YZ																
	Tel +44 (0) 1283 554400			Ν	l achy	nv's	Moun	d			Report N			EF	S/111308M		
	Fax +44 (0) 1283 554422					, 0		-			Table Number 1						

Customer and Site Details:	Soil Mechanics: Machyny's Moun	d	
Sample Details:	BH1 D 2 0.30	Job Number:	S11_1308M
LIMS ID Number:	CL1106341	Date Booked in:	21-Feb-11
QC Batch Number:	110368	Date Extracted:	24-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	24-Feb-11
Directory:	411PAH.MS14\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	5.85	0.13	98	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	7.21	0.28	89	UM
Pyrene	129-00-0	7.50	0.22	83	UM
Benzo[a]anthracene	56-55-3	9.19	0.21	95	UM
Chrysene	218-01-9	9.24	0.22	98	UM
Benzo[b]fluoranthene	205-99-2	10.72	0.28	92	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	11.15	0.17	94	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.53	0.15	85	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	12.84	0.14	92	UM
Total (USEPA16) PAHs	-	-	< 2.44	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	91
Phenanthrene-d10	94
Chrysene-d12	100
Perylene-d12	107

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	89
Terphenyl-d14	91

Concentrations are reported on a dry weight basis.

Customer and Site Details:	Soil Mechanics: Machyny's Mo	ound	
Sample Details:	BH1 D 6 1.20	Job Number:	S11_1308M
LIMS ID Number:	CL1106342	Date Booked in:	21-Feb-11
QC Batch Number:	110368	Date Extracted:	24-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	24-Feb-11
Directory:	411PAH.MS14\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	3.41	0.13	86	UM
Acenaphthylene	208-96-8	-	< 0.11	-	U
Acenaphthene	83-32-9	-	< 0.11	-	UM
Fluorene	86-73-7	-	< 0.11	-	UM
Phenanthrene	85-01-8	5.85	0.31	99	UM
Anthracene	120-12-7	-	< 0.11	-	U
Fluoranthene	206-44-0	7.21	0.15	66	UM
Pyrene	129-00-0	7.50	0.13	60	UM
Benzo[a]anthracene	56-55-3	-	< 0.11	-	UM
Chrysene	218-01-9	9.24	0.13	92	UM
Benzo[b]fluoranthene	205-99-2	10.72	0.18	94	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.11	-	UM
Benzo[a]pyrene	50-32-8	11.15	0.11	99	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.11	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.11	-	UM
Benzo[g,h,i]perylene	191-24-2	12.84	0.11	90	UM
Total (USEPA16) PAHs	-	-	< 2.14	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	93
Phenanthrene-d10	95
Chrysene-d12	103
Perylene-d12	114

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	86
Terphenyl-d14	85

Concentrations are reported on a dry weight basis.

Customer and Site Details:	Soil Mechanics: Machyny's Moun	d	
Sample Details:	BH2 D 7 2.00	Job Number:	S11_1308M
LIMS ID Number:	CL1106343	Date Booked in:	21-Feb-11
QC Batch Number:	110368	Date Extracted:	24-Feb-11
Quantitation File:	Initial Calibration	Date Analysed:	25-Feb-11
Directory:	411PAH.MS14\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	(min)		Concentration mg/kg	% Fit	Accr. code	
Naphthalene	91-20-3	-	< 0.11	-	UM	
Acenaphthylene	208-96-8	-	< 0.11	-	U	
Acenaphthene	83-32-9	4.59	0.18	95	UM	
Fluorene	86-73-7	4.98	0.13	94	UM	
Phenanthrene	85-01-8	5.85	1.60	99	UM	
Anthracene	120-12-7	5.90	0.41	98	U	
Fluoranthene	206-44-0	7.21	3.90	91	UM	
Pyrene	129-00-0	7.50	2.86	88	UM	
Benzo[a]anthracene	56-55-3	9.19	2.20	96	UM	
Chrysene	218-01-9	9.24	2.17	99	UM	
Benzo[b]fluoranthene	205-99-2	10.72	2.79	98	UM	
Benzo[k]fluoranthene	207-08-9	10.76	0.87	96	UM	
Benzo[a]pyrene	50-32-8	11.15	1.89	96	UM	
Indeno[1,2,3-cd]pyrene	193-39-5	12.52	1.43	89	UM	
Dibenzo[a,h]anthracene	53-70-3	12.56	0.35	93	UM	
Benzo[g,h,i]perylene	191-24-2	12.84	1.16	90	UM	
Total (USEPA16) PAHs	-	-	< 22.17	-	N	

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	92
Acenaphthene-d10	89
Phenanthrene-d10	90
Chrysene-d12	96
Perylene-d12	104

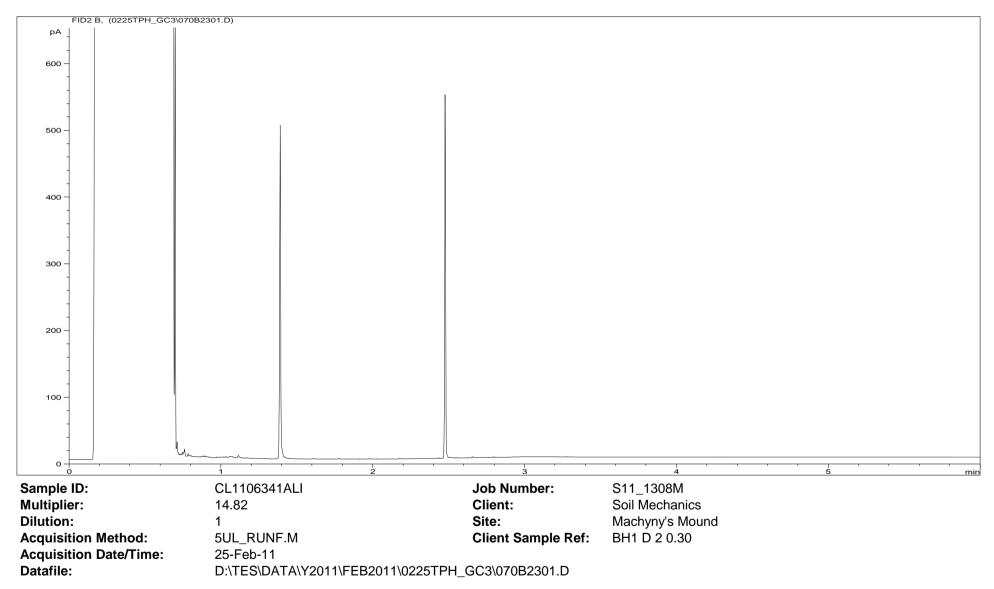
Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	90
Terphenyl-d14	91

Concentrations are reported on a dry weight basis.

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details:	Soil Mechanics : Machyny's Mound
Job Number:	S11_1308
Directory:	D:\TES\DATA\Y2011\0224HSA_GC12\022411B 2011-02-24 12-56-52\125B1601.D
Method:	Headspace GCFID
Accreditation Code:	Ν

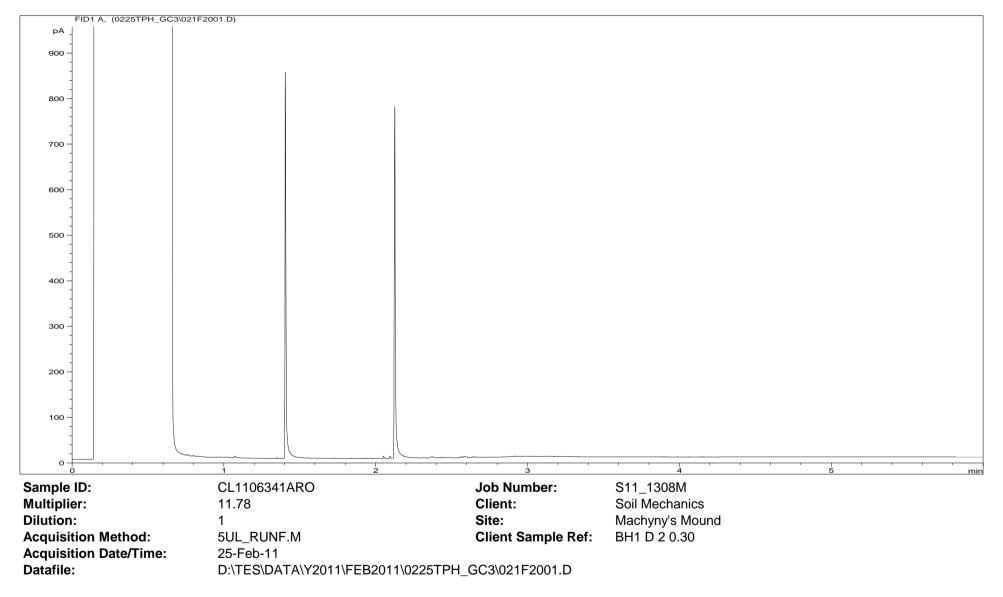
Matrix:SoilDate Booked in:21-Feb-11Date extracted:24-Feb-11Date Analysed:24-Feb-11, 21:2


		С	oncentratio	on, (mg/kg) - a	ns dry weigh	ıt.			Aliphatics		
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO
* CL1106341	BH1 D 2 0.30	<0.012	<0.012	<0.012	<0.012	<0.012	<0.2	<0.2	<0.2	<0.2	<0.2
* CL1106342	BH1 D 6 1.20	<0.014	<0.014	<0.014	<0.014	<0.014	<0.3	<0.3	<0.3	<0.3	<0.3
* CL1106343	BH2 D 7 2.00	<0.014	<0.014	<0.014	<0.014	<0.014	<0.3	<0.3	<0.3	<0.3	<0.3

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compund is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions

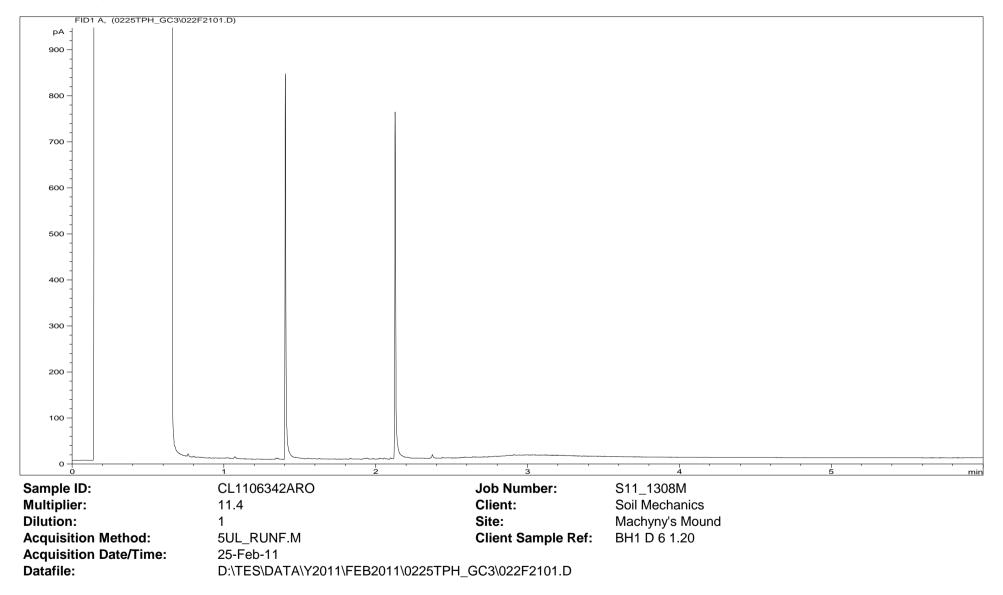
ALIPHATIC / AROMATIC FRACTION BY GC/FID


Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	Soil Mechanics : Machyny's Mound S11_1308 110368 D:\TES\DATA\Y2011\FEB2011\0225TPH Ultra Sonic		Eluents:	Silica gel Hexane, DCM				Matrix: Date Booked ir Date Extracted Date Analysed:	24-Feb-11					
					Conce	entration, (mg	/kg) - as dry v	weight.						
This sample data is not accr	redited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8	- C40	
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	
CL1106341	BH1 D 2 0.30	<5	<5	<5	<5	<5	<5	<5	<5	12.3	13.8	<23	<23	
CL1106342	BH1 D 6 1.20	<6	<6	<6	<6	<6	<6	<6	<6	18.9	30.4	37.5	54.8	
CL1106343	BH2 D 7 2.00	<6	<6	<6	<6	<6	<6	<6	16	16.5	87.7	<28	122	

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

EFS/111308M Ver. 1Where individual results are flagged see report notes for status.Page 9 of 17Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.


EFS/111308M Ver. 1Where individual results are flagged see report notes for status.Page 10 of 17Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

FID2 B, (0225TPH_GC3\071B2401.D) pA [·] 450 400 350 300 250 200 150 100 50 0 -Sample ID: CL1106342ALI Job Number: S11 1308M Multiplier: Client: Soil Mechanics 14.82 Dilution: Machyny's Mound 1 Site: Acquisition Method: 5UL_RUNF.M Client Sample Ref: BH1 D 6 1.20 Acquisition Date/Time: 25-Feb-11 Datafile: D:\TES\DATA\Y2011\FEB2011\0225TPH_GC3\071B2401.D

EFS/111308M Ver. 1Where individual results are flagged see report notes for status.Page 11 of 17Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

EFS/111308M Ver. 1Where individual results are flagged see report notes for status.Page 12 of 17Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

FID2 B, (0225TPH_GC3\072B2501.D) pА 600 500 400 300 200 100 0+ Job Number: Sample ID: CL1106343ALI S11 1308M Multiplier: Client: Soil Mechanics 14.04 Dilution: Machyny's Mound 1 Site: Acquisition Method: 5UL_RUNF.M Client Sample Ref: BH2 D 7 2.00 Acquisition Date/Time: 25-Feb-11 Datafile: D:\TES\DATA\Y2011\FEB2011\0225TPH_GC3\072B2501.D

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

EFS/111308M Ver. 1Where individual results are flagged see report notes for status.Page 13 of 17Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

FID1 A, (0225TPH_GC3\023F2201.D) pА 1000 800 600 400 200 0+ Sample ID: CL1106343ARO Job Number: S11 1308M Multiplier: Client: Soil Mechanics 10.44 Dilution: Machyny's Mound 1 Site: Acquisition Method: 5UL_RUNF.M Client Sample Ref: BH2 D 7 2.00 Acquisition Date/Time: 25-Feb-11 Datafile: D:\TES\DATA\Y2011\FEB2011\0225TPH_GC3\023F2201.D

EFS/111308M Ver. 1Where individual results are flagged see report notes for status.Page 14 of 17Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

ESG Asbestos Limited

Certificate of Analysis for Asbestos in Soils

	6	cientifics Environmental Chemistry				- SOIL ANA				
Client:										
ddress:	Et	wall House, Bretby Business Park, A	Ashby Road	l, Burton ι	ipon Trent		Report No:ANO-0488-895			
For the	attention of : So	oil Mechanics					Report Date:01/03/2011			
5	Site Address: M	achyny's Mound					Project Number:S111308			
SAMPLE	SAMPLE	SAMPLE LOCATION	Sample Type	DEPTH (M)	TEST DATE	% asbestos by	ASBESTOS FIBRE TYPES IDENTIFIED			
NUMBER	DATE		туре			dry weight**				
CL/1106341		BH1 0.3			01/03/2011	Screen & ID	Chrysotile			
CL/1106342		BH1 1.2			01/03/2011	Screen & ID	Chrysotile			
CL/1106343		BH2 2.0			01/03/2011	Screen & ID	Chrysotile			

Method Descriptions

Matrix	MethodID	Analysis	Method Description
Soil	GROHSA	Basis As Received	Determination of Total Capaling Dange Organics Hydrogerbane
501	GRUNSA	AS Received	Determination of Total Gasoline Range Organics Hydrocarbons
Qail		Air Dried	(GRO) by Headspace GCFID
Soil	ICPACIDS	Air Dried	Determination of Total Sulphate in soil samples by Hydrochloric
<u> </u>			Acid extraction followed by ICPOES detection
Soil	ICPBOR	Air Dried	Determination of Boron in soil samples by hot water extraction followed by ICPOES detection
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS
Soil	ICPSOIL	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPOES detection
Soil	ICPWSS	Air Dried	Determination of Water Soluble Sulphate in soil samples by water extraction followed by ICPOES detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SFAS	As Received	Segmented flow analysis with colorimetric detection
Soil	Subcon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis
Soil	TPHUSSI	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection including quantitation of Aromatic and Aliphatic fractions.
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample

Symbol Reference

^ Sub-contracted analysis. Note: The accreditation status is that assigned by the subcontract laboratory.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined

N.Det Not detected

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

END OF REPORT

Where individual results are flagged see report notes for status.

Sample Descriptions

Client : Soil Mechanics

Site : Machyny's Mound

Report Number : S11_1308M

Lab ID Number

CL/1106341

CL/1106342

CL/1106343

 Client ID
 Description

 BH1 D 2 0.30
 Grey Gravel SILT

 BH1 D 6 1.20
 Grey Gravel SILT

 BH2 D 7 2.00
 Grey Gravel SILT

 Image: State of the state of t

Note: major constituent in upper case

TEST REPORT LEACHATE SAMPLE ANALYSIS

Report No. EXR/116037 (Ver. 1)

Soil Mechanics Unit 15 Crosby Yard Wildmill Bridgend Mid Glamorgan CF31 1JZ

Site: Machyny's Mound

The 6 samples described in this report were logged for analysis by Scientifics on 10-Feb-2011. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 16-Feb-2011

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by Scientifics.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Table of Method Descriptions (Page 3) Table of Report Notes (Page 4)

On behalf of Scientifics : Andrew Timms

tuin

Operations Manager

Date of Issue: 16-Feb-2011

Tests marked '^' have been subcontracted to another laboratory.

Scientifics accepts no responsibility for any sampling not carried out by our personnel.

	Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		
	Method Codes :	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	SFAPI	ICPWATVAR		
	Method Reporting Limits : UKAS Accredited :	0.001 yes	0.001 yes	0.0001 yes	0.001 yes	0.001 yes	0.002 yes	0.001 yes	0.0001 yes	0.001 yes	0.001 yes	0.001 yes	0.05 yes	0.01 no		
	UNAS ACCIENTED :	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	110		
Laboratory ID Number EX/	Client Sample Description	Nickel as Ni (Dissolved)	Chromium as Cr (Dissolved)	Cadmium as Cd (Dissolved)	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Zinc as Zn (Dissolved)	Arsenic as As (Dissolved)	Mercury as Hg (Dissolved)	Selenium as Se (Dissolved)	Molybdenum as Mo (Dissolved)	Antimony as Sb (Dissolved)	Phenol Index as C6H5OH	Barium as Ba (Dissolved) a		
1105020	TP1 D 5 1.00	0.011	0.002	0.0001	0.022	<0.001	0.123	0.003	0.0001	0.003	0.095	0.005	<0.05	0.21		
1105021	TP4 D 1 0.20	0.002	0.005	<0.0001	0.023	0.002	0.217	0.004	<0.0001	0.001	0.035	0.003	<0.05	0.6		
1105022	TP5 D 3 0.60	0.003	0.003	<0.0001	0.017	<0.001	0.11	0.002	<0.0001	0.001	0.031	0.003	<0.05	0.27		
1105023	TP7 D 6 2.00	0.002	0.004	<0.0001	0.016	<0.001	0.114	0.003	<0.0001	0.002	0.025	0.004	<0.05	0.69		
1105024	TP8 D 2 0.50	0.003	0.01	<0.0001	0.057	<0.001	0.011	0.008	0.0005	0.003	0.1	0.005	<0.05	0.38		
1105025	TP9 D 6 1.50	0.009	0.005	0.0002	0.033	0.005	0.487	0.008	<0.0001	0.002	0.035	0.005	<0.05	0.48		
	scientifics Bretby Business Park, Ashby Road	Client N			chanics						Lea	achate	Sampl	e Analy	sis	
	Bretby Business Park, Ashby Road	Contact		Mr A Hen	ry											
	Burton-on-Trent, Staffordshire, DE15 0YZ										Date Prin	nted			16-Feb-11	
	Tel +44 (0) 1283 554400			N	/ lachy	mv'e I	Mour	Ч			Report N	lumber		EX	R/116037	
	Fax +44 (0) 1283 554422			N	nacity	11y 5 I	vioun	u			Table Nu	umber			1	

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	SFAPI	As Received	Determination of Total Phenols by segmented flow analysis with colorimetric detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample

Symbol Reference

^ Sub-contracted analysis. Note: The accreditation status is that assigned by the subcontract laboratory.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined

N.Det Not detected

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

END OF REPORT

Where individual results are flagged see report notes for status.

TEST REPORT LEACHATE SAMPLE ANALYSIS

Report No. EXR/116502 (Ver. 1)

Soil Mechanics Unit 15 Crosby Yard Wildmill Bridgend Mid Glamorgan CF31 1JZ

Site: Machyny's Mound

The 1 sample described in this report were logged for analysis by Scientifics on 23-Feb-2011. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 01-Mar-2011

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by Scientifics.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Table of Method Descriptions (Page 3) Table of Report Notes (Page 4)

On behalf of Scientifics : Andrew Timms

tuin

Operations Manager

Date of Issue: 01-Mar-2011

Tests marked '^' have been subcontracted to another laboratory.

Scientifics accepts no responsibility for any sampling not carried out by our personnel.

	Units :	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l			
	Method Codes :	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	SFAPI	ICPWATVAR			
	Method Reporting Limits :	0.001	0.001	0.0001	0.001	0.001	0.001	0.0001	0.001	0.001	0.001	0.05	0.01			
	UKAS Accredited :	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	no			
Laboratory ID Number EX/	Client Sample Description	Nickel as Ni (Dissolved)	Chromium as Cr (Dissolved)	Cadmium as Cd (Dissolved)	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Arsenic as As (Dissolved)	Mercury as Hg (Dissolved)	Selenium as Se (Dissolved)	Molybdenum as Mo (Dissolved)	Antimony as Sb (Dissolved)	Phenol Index as C6H5OH	Barium as Ba (Dissolved) a			
1106649	BH1 D 2 0.30	0.002	0.004	0.0001	0.012	0.001	0.003	<0.0001	0.001	0.022	0.003	0.06	0.8			
	L															
	Scientifics Bretby Business Park, Ashby Road Contact				Soil Mechanics Mr A Henry						Leachate Sample Analysis					
	Burton-on-Trent, Staffordshire, DE15 0YZ			•							Date Prir	nted		01-Mar-11		
	Tel +44 (0) 1283 554400			_						Report Number			EXR/116502			
	Fax +44 (0) 1283 554422			N	lachy	'ny's l	Vloun	d								
	. a (v) 1200 007722					-					Table Number 1					

Method Descriptions

Matrix	MethodID	Analysis	Method Description						
		Basis							
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS						
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES						
Water	SFAPI	As Received	Determination of Total Phenols by segmented flow analysis with colorimetric detection						

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample

Symbol Reference

^ Sub-contracted analysis. Note: The accreditation status is that assigned by the subcontract laboratory.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined

N.Det Not detected

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

TEST REPORT WATER SAMPLE ANALYSIS

Report No. EXR/116731 (Ver. 1)

Soil Mechanics Unit 15 Crosby Yard Wildmill Bridgend Mid Glamorgan CF31 1JZ

Site: Machynys Mound

The 1 sample described in this report were logged for analysis by Scientifics on 02-Mar-2011. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 14-Mar-2011

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by Scientifics.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (10) Results (Page 4) Table of SVOC Results (Page 5) Table of SVOC (Tics) Results (Page 6) Table of GRO Results (Page 7) Table of TPH (Si) banding (0.01) (Page 8) GC-FID Chromatograms (Pages 9 to 10) Table of VOC (HSA) Results (Page 11) Table of VOC (Tics) Results (Page 12) Table of Method Descriptions (Page 13) Table of Report Notes (Page 14)

On behalf of Scientifics : Andrew Timms

tuin

Operations Manager

Date of Issue: 14-Mar-2011

Tests marked '^' have been subcontracted to another laboratory.

Scientifics accepts no responsibility for any sampling not carried out by our personnel.

		Units :		mg/l	mg/l	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		d Codes :	WSLM3		ICPWATVAR		ICPMSW	ICPMSW	PAHMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPWATVAR		ICPMSW	KONENS	SFAPI
	Method Reporting			1	3.0	0.001	0.001	0.0001	0.01	0.001	0.001	0.002	0.001	0.01	0.0001	0.001	0.01	0.02
Laboratory ID Number EX/	UKAS Acc	Sample Date	yes pH units	yes Chloride as Cl w	yes Total Sulphur as SO4 (Dissolved) a	yes Nickel as Ni (Dissolved)	yes Chromium as Cr (Dissolved)	yes Cadmium as Cd (Dissolved)	yes PAH MS-SIM (16)	yes Copper as Cu (Dissolved)	yes Lead as Pb (Dissolved)	yes Zinc as Zn (Dissolved)	yes Arsenic as As (Dissolved)	yes Boron as B (Dissolved) a	yes Mercury as Hg (Dissolved)	yes Selenium as Se (Dissolved)	yes Ammoniacal Nitrogen as N	yes Cyanide (Total) as CN
1107769	BH1 EW 1 2.50	24-Feb-11	7.6	323	221	0.003	0.004	<0.0001	Req	0.002	<0.001	0.003	0.002	0.4	<0.0001	0.008	0.4	<0.02
				-														
	Scientifics		Client N Contact		Soil Me Mr A Hen	chanics						v	Vater S	ample	Analys	is		
	Burton-on-Trent, Staffordshire, DE15 0YZ		Contact	<u>.</u>		• 3						Date Priv	ntod			14-Mar-11		
	Tel +44 (0) 1283 554400																	
					Machynys Mound				Report Number EXR/11673 Table Number									
	Fax +44 (0) 1283 554422					,	-						linder			1		

		Units :	mg/l	mg/l	ug/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l				
		d Codes :	TPHFID-S			/ PCBAROEC		PHEHPLC	PHEHPLC		PHEHPLC				
	Method Reporting		0.01	0.002	1	0.0005	0.1	0.0005	0.0005	0.0005	0.0005				
	UKAS Acc	credited :	yes	yes	yes	no	no	no	no	no	no				
Laboratory ID Number EX/	Client Sample Description	Sample Date	TPH GC (AA)	SVOC + TICS	Volatile Organic Compounds	PCB - ARO	GRO-HSA (AA)	Phenol	Cresols	Dimethylphenols	Trimethylphenols				
1107769	BH1 EW 1 2.50	24-Feb-11	Req	Req	Req	<0.0005	Req	<0.0005	<0.0005	<0.0005	<0.0005				
	Scientifics Bretby Business Park, Ashby Road Client Nan Contact				Soil Mechanics Mr A Henry						Water Sample Analysis				
	Burton-on-Trent, Staffordshire, DE15 0YZ		Contac	•		,						Date Printed	17	4-Mar-11	
	Tel +44 (0) 1283 554400														
					Machynys Mound						Report Number	EXR/			
	Fax +44 (0) 1283 554422				-		, - ,		-			Table Number		1	
												1			

Customer and Site Details: Sample Details: LIMS ID Number: QC Batch Number: Quantitation File: Directory: Dilution: Soil Mechanics: Machynys MoundBH1 EW 1 2.50Job NuEX1107769Date B0197Date EInitial CalibrationDate A0313PAH.MS4\Matrix:1.0Ext Me

Job Number: W11_6731 Date Booked in: 02-Mar-11 Date Extracted: 11-Mar-11 Date Analysed: 13-Mar-11 Matrix: Water Ext Method: Sep. Funnel

UKAS accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	ug/l	
Naphthalene	91-20-3	3.13	0.017	М
Acenaphthylene	208-96-8	-	< 0.010	-
Acenaphthene	83-32-9	-	< 0.010	-
Fluorene	86-73-7	-	< 0.010	-
Phenanthrene	85-01-8	5.50	0.023	М
Anthracene	120-12-7	-	< 0.010	-
Fluoranthene	206-44-0	6.82	0.024	М
Pyrene	129-00-0	7.10	0.022	М
Benzo[a]anthracene	56-55-3	8.77	0.025	М
Chrysene	218-01-9	8.82	0.013	М
Benzo[b]fluoranthene	205-99-2	10.30	0.021	М
Benzo[k]fluoranthene	207-08-9	-	< 0.010	-
Benzo[a]pyrene	50-32-8	10.72	0.015	М
Indeno[1,2,3-cd]pyrene	193-39-5	12.10	0.010	М
Dibenzo[a,h]anthracene	53-70-3	-	< 0.010	-
Benzo[g,h,i]perylene	191-24-2	12.39	0.010	М
Total (USEPA16) PAHs	-	-	< 0.240	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	123
Acenaphthene-d10	125
Phenanthrene-d10	141
Chrysene-d12	146
Perylene-d12	155

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	58
Terphenyl-d14	63

Semi-Volatile Organic Compounds

UKAS accredited?: No

Customer and Site Details:	Soil Mechanics: Machy	/nys Mound			Matrix:	Water		QC Batch Number:	461
Sample Details:	BH1 EW 1 2.50		Date Booked in:	02-Mar-11	Ext Method:	Sep. Funnel		Multiplier:	0.006
LIMS ID Number:	EX1107769		Date Extracted:	08-Mar-11	Operator:	SO/DMB		Dilution Factor:	3
Job Number:	W11_6731		Date Analysed:	08-Mar-11	Directory/Quant File:	08SVOC.GC11\	0308_CCC2.	D GPC (Y/N)	Ν
Target Compounds	CAS #	R.T. (min)	Concentration mg/l	% Fit	Target Compounds	CAS #	R.T.	Concentration mg/l	% Fit
Dhanal	108-95-2	()	< 0.024		2,4-Dinitrophenol	51-28-5 *	_	< 0.012	_
Phenol		-		-			-		-
bis(2-Chloroethyl)ether	<u>111-44-4</u> 95-57-8	-	< 0.006 < 0.024	-	Dibenzofuran	<u>132-64-9</u> 100-02-7	-	< 0.006 < 0.060	
2-Chlorophenol		-		-	4-Nitrophenol		-		
1,3-Dichlorobenzene	541-73-1	-	< 0.006	-	2,4-Dinitrotoluene	121-14-2	-	< 0.006	
1,4-Dichlorobenzene	106-46-7	-	< 0.006	-	Fluorene	86-73-7	-	< 0.002	-
Benzyl alcohol	100-51-6	-	< 0.006	-	Diethylphthalate	84-66-2	-	< 0.006	-
1,2-Dichlorobenzene	95-50-1	-	< 0.006	-	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.006	
2-Methylphenol	95-48-7	-	< 0.006	-	4,6-Dinitro-2-methylphenol	534-52-1	-	< 0.060	-
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.006	-	4-Nitroaniline	100-01-6	-	< 0.006	-
Hexachloroethane	67-72-1	-	< 0.006	-	N-Nitrosodiphenylamine	86-30-6 *	-	< 0.006	-
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.006	-	4-Bromophenyl-phenylether	101-55-3	-	< 0.006	-
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 0.024	-	Hexachlorobenzene	118-74-1	-	< 0.006	-
Nitrobenzene	98-95-3	-	< 0.006	-	Pentachlorophenol	87-86-5	-	< 0.060	-
Isophorone	78-59-1	-	< 0.006	-	Phenanthrene	85-01-8	-	< 0.002	-
2-Nitrophenol	88-75-5	-	< 0.024	-	Anthracene	120-12-7	-	< 0.002	-
2,4-Dimethylphenol	105-67-9	-	< 0.024	-	Di-n-butylphthalate	84-74-2	-	< 0.006	-
Benzoic Acid	65-85-0 *	-	< 0.120	-	Fluoranthene	206-44-0	-	< 0.002	-
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.006	-	Pyrene	129-00-0	-	< 0.002	-
2,4-Dichlorophenol	120-83-2	-	< 0.024	-	Butylbenzylphthalate	85-68-7	-	< 0.006	-
1,2,4-Trichlorobenzene	120-82-1	-	< 0.006	-	Benzo[a]anthracene	56-55-3	-	< 0.002	-
Naphthalene	91-20-3	-	< 0.002	-	Chrysene	218-01-9	-	< 0.002	-
4-Chlorophenol	106-48-9	-	< 0.024	-	3.3'-Dichlorobenzidine	91-94-1	-	< 0.024	-
4-Chloroaniline	106-47-8 *	-	< 0.006	-	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.006	-
Hexachlorobutadiene	87-68-3	-	< 0.006	-	Di-n-octylphthalate	117-84-0	-	< 0.002	-
4-Chloro-3-methylphenol	59-50-7	-	< 0.006	-	Benzo[b]fluoranthene	205-99-2	-	< 0.002	-
2-Methylnaphthalene	91-57-6	-	< 0.002	-	Benzo[k]fluoranthene	207-08-9	-	< 0.002	-
1-Methylnaphthalene	90-12-0	-	< 0.002		Benzo[a]pyrene	50-32-8		< 0.002	<u> </u>
Hexachlorocyclopentadiene	77-47-4 *	-	< 0.002		Indeno[1,2,3-cd]pyrene	193-39-5		< 0.002	-
2,4,6-Trichlorophenol	88-06-2		< 0.000		Dibenzo[a,h]anthracene	53-70-3	-	< 0.002	
2,4,5-Trichlorophenol	95-95-4		< 0.024		Benzo[g,h,i]perylene	191-24-2	-	< 0.002	
2-Chloronaphthalene	91-58-7	-	< 0.024	-	Benzolg,n,ijperviene		- / fit has hoon	manually interpreted	
Biphenyl	92-52-4	-	< 0.002	-			o iit nas been	manually interpreted	
				-	Internal Standarda	0/ Алаа	7	Sumo motor	0/ Do:
Diphenyl ether 2-Nitroaniline	101-84-8	-	< 0.002	-	Internal Standards	% Area	4	Surrogates	% Rec
	88-74-4	-	< 0.006	-	1,4-Dichlorobenzene-d4	80	4	2-Fluorophenol	54
Acenaphthylene	208-96-8	-	< 0.002	-	Naphthalene-d8	82	4	Phenol-d5	40
Dimethylphthalate	131-11-3	-	< 0.006	-	Acenaphthene-d10	82	4	Nitrobenzene-d5	116
2,6-Dinitrotoluene	606-20-2	-	< 0.006	-	Phenanthrene-d10	82	4	2-Fluorobiphenyl	118
Acenaphthene	83-32-9	-	< 0.002	-	Chrysene-d12	73	4	2,4,6-Tribromophenol	82
3-Nitroaniline	99-09-2	-	< 0.006	-	Perylene-d12	71		Terphenyl-d14	122

Compounds marked with a * are reported not UKAS.

Concentrations are reported on a wet weight basis.

"M" denotes that % fit has been manually interpreted

SVOC (TICs)

	ι	JKAS accredited?	?:No	
Customer and Site Details:	Soil Mechanics: N	lachynys Mound		
Sample Details:	BH1 EW 1 2.50		Job Number:	W11_6731
LIMS ID Number:	EX1107769			
			Multiplier:	0.006
Date Booked in:	02-Mar-11		Dilution Factor:	3
Date Extracted:	08-Mar-11		GPC (Y/N):	Ν
Date Analysed:	08-Mar-11		Matrix:	Water
QC Batch Number:	461		Method:	Sep. Funnel
Directory/Quant File:	08SVOC.GC11\	0308_CCC2.D	Operator:	SO/DMB

Tentatively Identified Compounds	CAS #	R.T.	Concentration mg/l	% Fit
Unidentified Peak	-	3.19	0.030	-

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds assignments may not be correct.

Other compounds may also be present but identification was not possible.

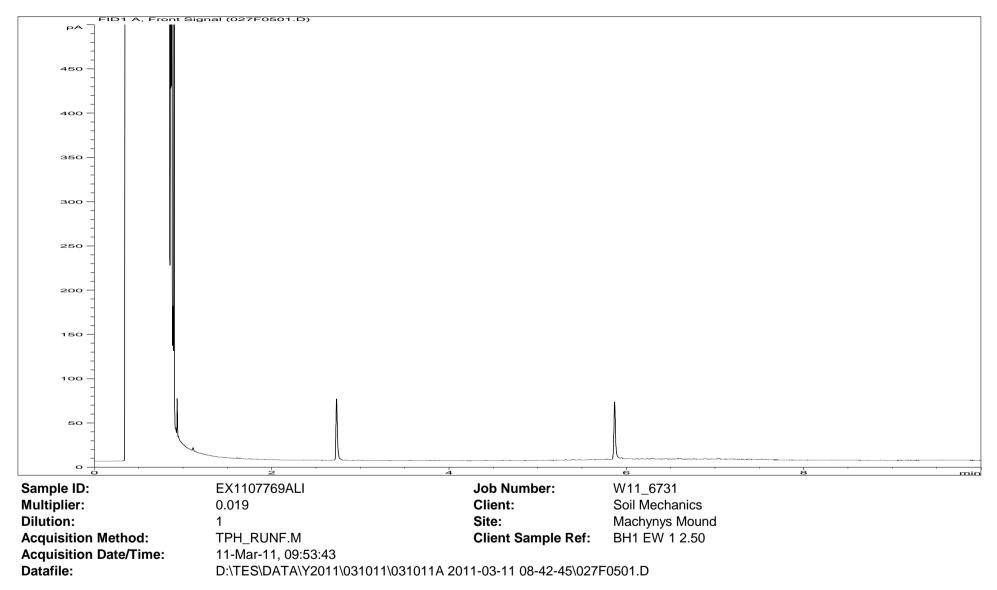
Concentrations are semi-quantitative, assume a response factor of 1 and use the nearest internal standard.

Gasoline Range Organics (BTEX and Aliphatic Carbon Ranges)

Customer and Site Details:	Soil Mechanics : Machynys Mound
Job Number:	W11_6731
Directory:	D:\TES\DATA\Y2011\0310AHSA_GC12\031011B 2011-03-11 13-57-10\135B3501.D
Method:	Headspace GCFID

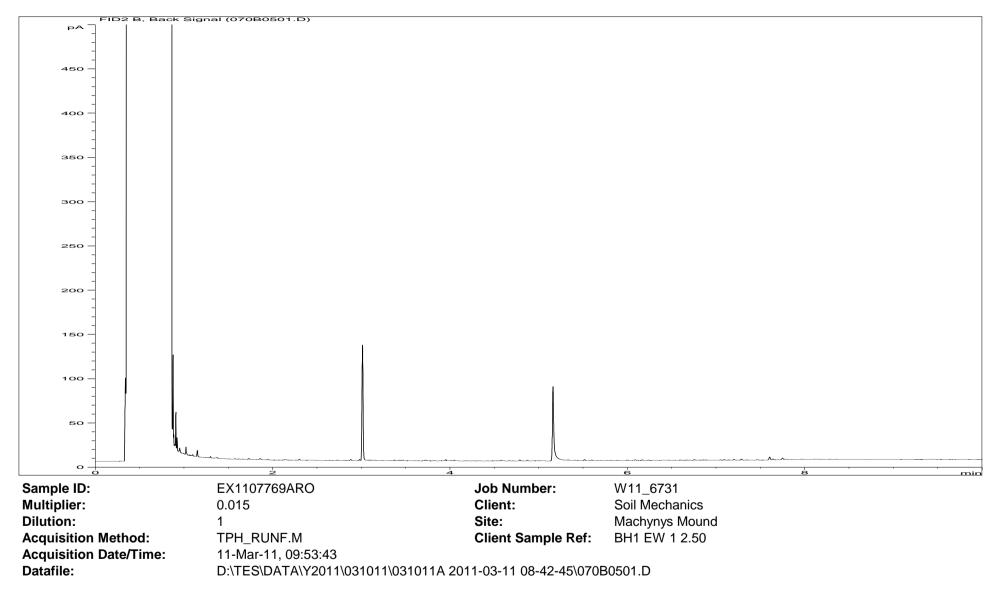
Matrix:WaterDate Booked in:02-Mar-11Date extracted:11-Mar-11Date Analysed:12-Mar-11, 00:4.

* Sample data with an asterisk are not UKAS accredited.


		Concentration, (mg/l)					Aliphatics					
Sample ID	Client ID	Benzene	Toluene	Ethyl benzene	m/p-Xylene	o-Xylene	C5 - C6	>C6 - C7	>C7 - C8	>C8 - C10	Total GRO	
* EX1107769	BH1 EW 1 2.50	<0.005	<0.005	<0.005	<0.005	<0.005	<0.1	<0.1	<0.1	<0.1	<0.1	
											ļ	

Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

Each BTEX compund is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions


ALIPHATIC / AROMATIC FRACTION BY GC/FID

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	Soil Mechanics : Machyr W11_6731 110197 D:\TES\DATA\Y2011\03 ⁷ Separating Funnel	-	Separation: Eluents: 11-03-11 08-42	Silica gel Hexane, DCM -45\070B0501.D				Matrix: Date Booked i Date Extracted Date Analysed		53:43			
						Concentra	tion, (mg/l)						
* This sample data is not UI	KAS accredited.	>C8	- C10	>C10	- C12	>C12	- C16	>C16	- C21	>C21	- C35	>C8 ·	- C40
Sample ID	Client ID	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics
EX1107769	BH1 EW 1 2.50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.044	<0.01	0.069	<0.01

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aliphatics Fraction.

Where individual results are flagged see report notes for status.

Petroleum Hydrocarbons (C8 to C40) by GC/FID Aromatics Fraction.

Where individual results are flagged see report notes for status.

Volatile Organic Compounds by HSA-GCMS

				UKAS accredite	d?: Yes				
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	Soil Mechanics: Ma BH1 EW 1 2.50 EX1107769 W11_6731	uchynys Mound			Directory/Quant file: Date Booked in: Date Analysed: Operator:	0310VOC.MS8\ 02-Mar-11 10-Mar-11 PR	Initial Calibration	Matrix: Method: Multiplier: Position:	Water Headspace 1 14
Target Compounds	CAS #	R.T. (min.)	Concentration μg/l	% Fit	Target Compounds	CAS #	R.T. (min.)	Concentration µg/l	% Fit
Dichlorodifluoromethane	75-71-8 *	-	< 1	-	Styrene	100-42-5	-	< 1	-
Chloromethane	74-87-3	-	< 1	-	Bromoform	75-25-2	-	< 1	-
Vinyl Chloride	75-01-4	-	< 1	-	iso-Propylbenzene	98-82-8	-	< 1	-
Bromomethane	74-83-9 *	-	< 5	-	1,1,2,2-Tetrachloroethane	79-34-5	-	< 1	-
Chloroethane	75-00-3	-	< 5	-	Propylbenzene	103-65-1	-	< 1	-
Trichlorofluoromethane	75-69-4	-	< 1	-	Bromobenzene	108-86-1	-	< 1	-
1,1-Dichloroethene	75-35-4	-	< 1	-	1,2,3-Trichloropropane	96-18-4	-	< 1	-
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	2-Chlorotoluene	95-49-8	-	< 1	-
1,1-Dichloroethane	75-34-3	-	< 1	-	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-
2,2-Dichloropropane	594-20-7 *	-	< 1	-	4-Chlorotoluene	106-43-4	-	< 1	-
cis 1,2-Dichloroethene	156-59-2	-	< 1	-	tert-Butylbenzene	98-06-6	-	< 1	-
Bromochloromethane	74-97-5	-	< 1	-	1,2,4-Trimethylbenzene	95-63-6	-	< 1	-
Chloroform	67-66-3	-	< 5	-	sec-Butylbenzene	135-98-8	-	< 1	-
1,1,1-Trichloroethane	71-55-6	-	< 1	-	p-Isopropyltoluene	99-87-6	-	< 1	-
Carbon Tetrachloride	56-23-5	-	< 1	-	1,3-Dichlorobenzene	541-73-1	-	< 1	-
1,1-Dichloropropene	563-58-6	-	< 1	-	1,4-Dichlorobenzene	106-46-7	-	< 1	-
Benzene	71-43-2	-	< 1	-	n-Butylbenzene	104-51-8	-	< 1	-
1,2-Dichloroethane	107-06-2	-	< 1	-	1,2-Dichlorobenzene	95-50-1	-	< 5	-
Trichloroethene	79-01-6	-	< 5	-	1,2-Dibromo-3-chloropropane	96-12-8 *	-	< 5	-
1,2-Dichloropropane	78-87-5	-	< 1	-	1,2,4-Trichlorobenzene	120-82-1	-	< 5	-
Dibromomethane	74-95-3	-	< 1	-	Hexachlorobutadiene	87-68-3	-	< 5	-
Bromodichloromethane	75-27-4	-	< 1	-	Naphthalene	91-20-3	-	< 5	-
cis 1,3-Dichloropropene	10061-01-5 *	-	< 1	-	1,2,3-Trichlorobenzene	87-61-6	-	< 5	-
Toluene	108-88-3	-	< 1	-					
trans 1,3-Dichloropropene	10061-02-6 *	-	< 1	-		Compounds m	arked * are not UK	AS accredited	
1,1,2-Trichloroethane	79-00-5	-	< 1	-		"M" denotes that	% fit has been mar	ually interpreted	
Tetrachloroethene	127-18-4	-	< 5	-					
1,3-Dichloropropane	142-28-9	-	< 1	-	<u>]</u>				
Dibromochloromethane	124-48-1	-	< 1	-	Internal standards	R.T.	Area %	Surrogates	% Rec

Internal standards	R.T.	Area %	Surrogates	% Rec
Pentafluorobenzene	3.42	86	Dibromofluoromethane	114
1,4-Difluorobenzene	3.78	85	Toluene-d8	99
Chlorobenzene-d5	4.92	81	Bromofluorobenzene	98
1,4-Dichlorobenzene-d4	5.72	76		

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

-

-

-

-

-

-

< 1

< 1

< 1

< 1

< 1

< 1

1,1,1,2-Tetrachloroethane

106-93-4

108-90-7

100-41-4

630-20-6

108-38-3/106-42-3

95-47-6

-

-

-

-

-

-

1,2-Dibromoethane

Chlorobenzene

m and p-Xylene

o-Xylene

Ethylbenzene

TICs by HSA-GCMS

UKAS accredited?: No

Customer and Site Details:	Soil Mechanics: Machynys Mound		Date Booked in:	02-Mar-11
Sample Details:	BH1 EW 1 2.50		Date Analysed:	10-Mar-11
LIMS ID Number:	EX1107769		Matrix:	Water
Job Number:	W11_6731		Ext Method:	Headspace
Directory/Quant file:	0310VOC.MS8\	Initial Calibration	Dilution:	1
Operator:	PR		Position:	14

Tentatively Identified Compounds	CAS No	R.T. (min.)	Concentration µg/l	% Fit
Acetone	67-64-1		<5	

The compounds listed above have been tentatively identified by a computer based library search.

Compounds identified in the sample are not reported if they also occur in the method blank.

The % fit is an indication of the reliability of the compound assignment.

Due to the similarity between mass spectra of some isomeric compounds, assignments may not be correct.

Other compounds may also be present but identification was not possible.

Concentrations are semi-quantitative, assume a response factor of 1 and use the nearest internal standard.

Compounds marked * are not UKAS accredited

"M" denotes that % fit has been manually interpreted

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	PAHMSW	As Received	Determination of PolyAromatic Hydrocarbons in water by pentane
			extraction GCMS quantitation
Water	PCBAROEC	As Received	Determination of Polychlorinated Biphenyl (PCB) aroclors by
			pentane extraction followed by GCECD detection
Water	PHEHPLC	As Received	Determination of Total Phenol by HPLC
Water	SFAPI	As Received	Determination of Total Phenols by segmented flow analysis with
			colorimetric detection
Water	SVOCSW	As Received	Determination of Semi Volatile Organic Compounds (SVOC) by
			DCM extraction followed by GCMS detection
Water	TPHFID-Si	As Received	Determination of speciated pentane extractable hydrocarbons in
			water by GCFID
Water	VOCHSAW	As Received	Determination of Volatile Organics Compounds or Gasoline Range
			Hydrocarbons (GRO) by Headspace GCMS
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample

Symbol Reference

^ Sub-contracted analysis. Note: The accreditation status is that assigned by the subcontract laboratory.

\$\$ Unable to analyse due to the nature of the sample

¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

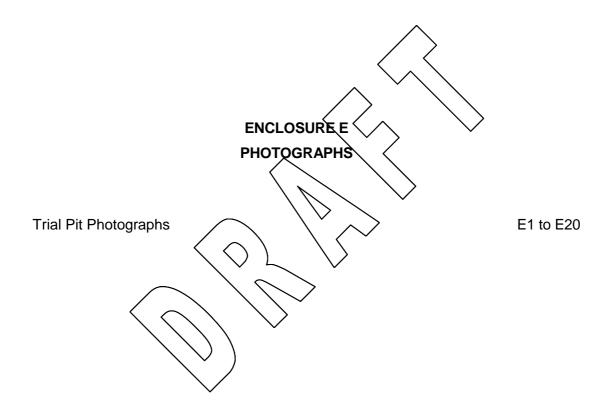
Intf Unable to analyse due to interferences

N.D Not determined

N.Det Not detected

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample


* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E1
	Carried out for	Carmarthenshire County Council	

E3

H1003-11

Carmarthenshire County Council

Project No. Carried out for

Trial Pit 2

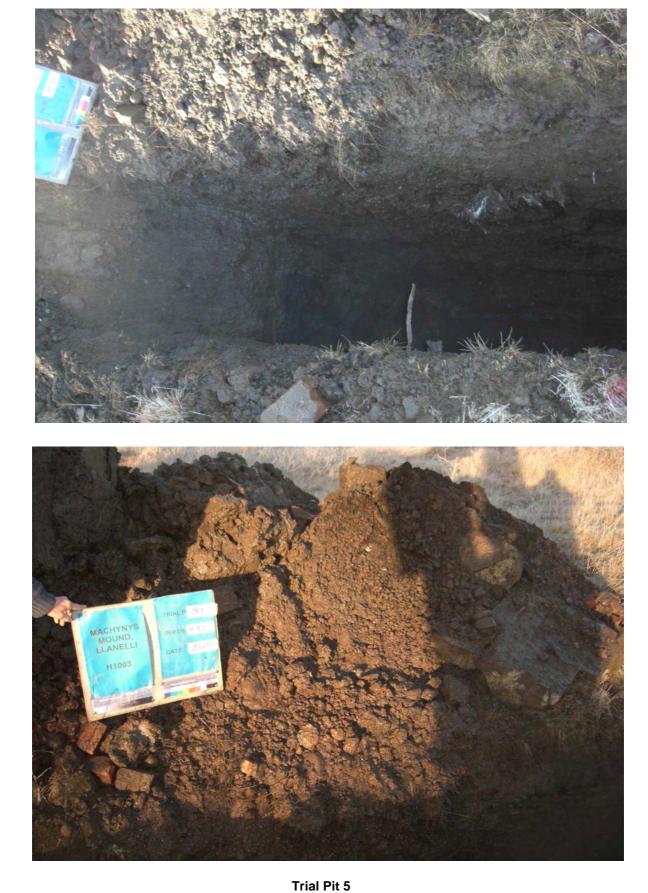
Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E4
	Carried out for	Carmarthenshire County Council	

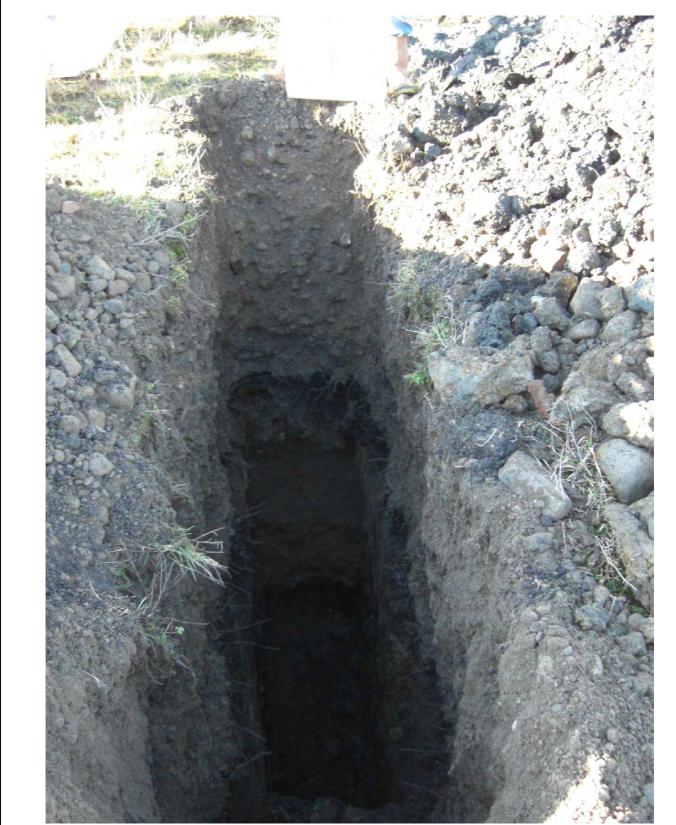
Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E5
	Carried out for	Carmarthenshire County Council	

Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E6
	Carried out for	Carmarthenshire County Council	


Trial Pit 4

Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E7
	Carried out for	Carmarthenshire County Council	




Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E9
	Carried out for	Carmarthenshire County Council	

Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E10
	Carried out for	Carmarthenshire County Council	

Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E11
	Carried out for	Carmarthenshire County Council	

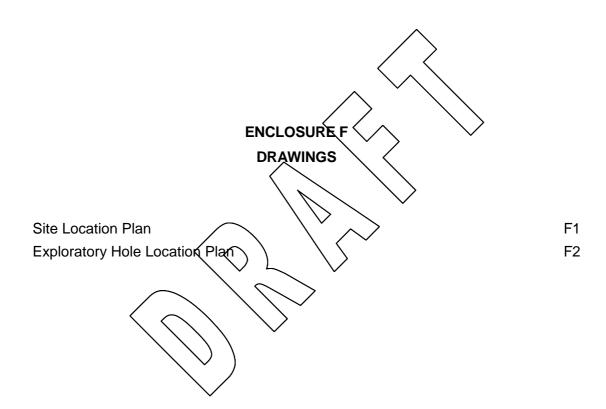
Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E12
	Carried out for	Carmarthenshire County Council	

Notes: Project Machynys Mound, Machynys Figure Project No. H1003-11 E13 Carried out for Carmarthenshire County Council Carmarthenshire County Council

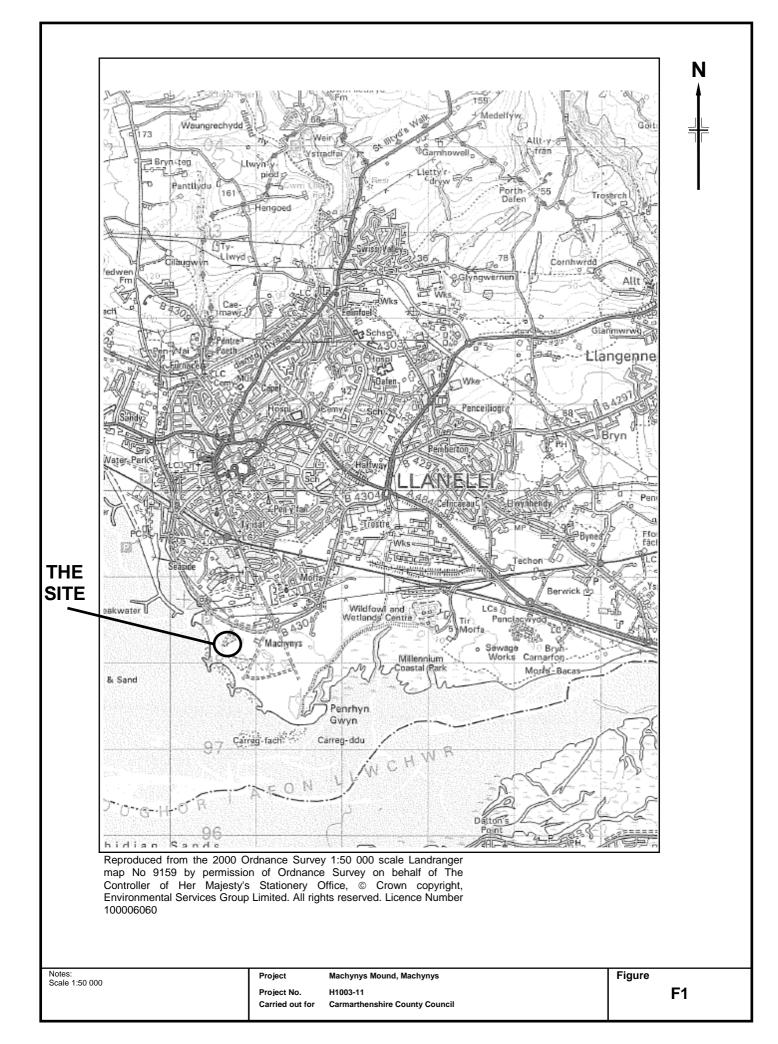
Trial Pit 8

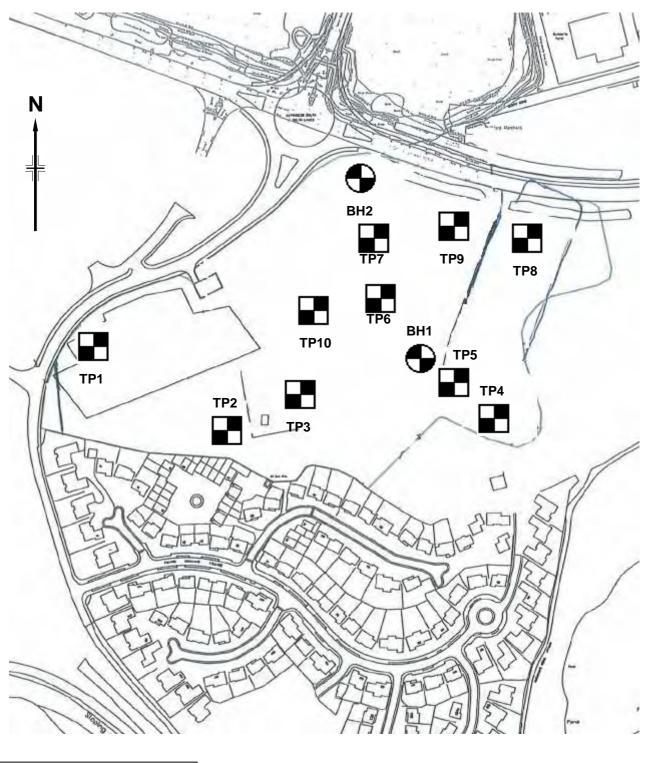
Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E15
	Carried out for	Carmarthenshire County Council	

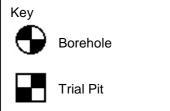
Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E17
	Carried out for	Carmarthenshire County Council	



Notes:	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	E19
	Carried out for	Carmarthenshire County Council	




Site Location Plan



Exploratory Hole Location Plan

Soil Mechanics

Notes: Not to scale	Project	Machynys Mound, Machynys	Figure
	Project No.	H1003-11	F2
	Carried out for	Carmarthenshire County Council	